holzbau<mark>lehrstuhl</mark>

Universität Innsbruck

Fakultät für Bauingenieurwissenschaften

 Technikerstraße
 13 - 6020
 Innsbruck

 Telefon:
 +43 / 512 / 507 36000
 Fax:
 +43 / 512 / 507 36999

 E-Mail:
 holzbau@uibk.ac.at
 Internet:
 www.uibk.ac.at/holzbau

Gebirgsholz – Wald ohne Grenzen

LABORTECHNISCHE UNTERSUCHUNGEN

- Visuelle Sortierung
- Maschinelle Sortierung
- Astigkeiten
- Festigkeiten
- Steifigkeiten
- Rohdichten

Durchgeführt am Institut für Konstruktion und Materialwissenschaften – AB HolzbauProjektleitung:Anton KralerProjektbearbeitung:Roland MaderebnerTVFA Technische Versuchs- und Forschungsanstalt, Universität Innsbruck

Tirol

Holzinformation Holzcluster Holzbaulehrstuhl

Inhalt

1		Einle	eitung	4
	1.1	Die F	Funktionen des Waldes	4
	1.2	Wald	dflächen in Österreich und Südtirol	4
	1.2.	1	Situation in Österreich und Südtirol	4
	1.2.	2	Jährlicher Zuwachs und Nutzung in Österreich	6
2		Ziels	setzung	8
3		Prog	gramm und Durchführung der Arbeitsschritte	8
	3.1	AP1:	: Auswahl der Standorte und Gewinnung des Versuchsmaterials	8
	3.1.	1	Auswahl der Standorte für das Prüfmaterial	8
	3.1.	2	Einschnitt der Prüfkörper	.10
	3.2	AP2:	: Maschinelle Sortierung	.11
	3.2.	1	Entstapelung, Feuchtekontrolle und Wendestation [14]	.11
	3.2.	2	Sortierung [14]	.12
	3.3	AP3:	: Labortechnische Untersuchungen	.12
	3.3.	1	Visuelle Sortierung	.12
	3.3.	2	Sortiermerkmale	.14
	3.3.	3	Holzfeuchte und Rohdichte	.18
	3.3.	4	Ultraschall-Messungen	.18
	3.3.	5	Zuschnitt der Prüfkörper	.20
	3.3.	6	Astparameter	.21
	3.4	Bieg	eprüfungen	.25
	3.4.	1	Klimatisierung	.25
	3.4.	2	Ermittlung des globalen Biege-Elastizitätsmoduls	.25
	3.4.	3	Ermittlung der Biegefestigkeit	.26
	3.4.	4	Darrtrocknung, Bestimmung der Rohdichte	.27
4		Spät	holzanalyse	.28
	4.1	Allge	emeines	.28
5		Quel	ll- und Schwindverhalten	.30
6		Erge	ebnisse der labortechnischen Untersuchungen	.32
	6.1	Allge	emeines	.32
	6.2	Erge	ebnisse der visuellen Sortierung	.33

	6.3	Fes	tigkeitsklassen nach Versuchsergebnissen gemäß EN 408 [12]	37
	6.	3.1	Verteilung der Sortier- bzw. Festigkeitsklassen bei Unterteilung in Höhen-	
	Ko	orrido	re	40
	6.4	Vor	kommen von Haselfichten	41
	6.5	Mit	tlere Jahrringbreiten J $_{ m br}$ [mm]	41
	6.	5.1	Ergebnisse der Ermittlung der Astparameter	44
	6.6	Erg	ebnisse der Ultraschallmessungen	48
	6.7	Erg	ebnisse der Biegeprüfungen	50
	6.	7.1	Biegefestigkeit f _{m,150} [N/mm²] nach EN 384 [19]	50
	6.	7.2	Globaler Biege E-Modul <i>E_{m,g,12}</i> [N/mm²] nach EN 384 [19]	52
	6.	7.3	Norm - Rohdichten p12 [kg/m³] nach EN 384 [19]	54
	6.8	Erg	ebnisse zu den Untersuchungen des Quell- und Schwindverhaltens der	
		Prü	lfkörper nach DIN 52184 [20]	56
	6.	8.1	Rohdichte $ ho_{12}$	56
	6.	8.2	Darrdichte $ ho_0$	57
	6.	8.3	Maximales longitudinales Quellmaß $eta_{\ell, max}$	58
	6.	8.4	Maximales radiales Quellmaß $eta_{r,max}$	59
	6.	8.5	Maximales tangentiales Quellmaß $eta_{\iota, max}$	60
	6.	8.6	Korrelationen zwischen physikalischen Parametern und den Schwindmaßer	1.61
	6.9	Spä	itholzanalyse	63
	6.	9.1	Jahrringbreiten	63
	6.	9.2	Spätholzanteil	66
7		Ma	schinelle Sortierparameter	70
	7.1	Ma	schinell ermittelter Astparameter Kn001	71
	7.2	Ma	schinell ermittelter Astparameter KnAll	73
	7.3	Ma	schineller Sortierparameter Festigkeit IP_MOR	75
	7.4	Ma	schineller Sortierparameter E-Modul IP_MOE	77
	7.5	Ma	schineller Sortierparameter Rohdichte IP_DEN	80
8		Ana	alyse der Ergebnisse, Diskussionspunkte	82
9		Anł me	nang A - Zusammenfassung einiger wichtiger physikalischer und elasto- chanischer Eigenschaften, sowie Angaben zu den Standorten	90
	9.1	Sta	ndorte Kollektiv Südtirol	90
	9.	1.1	Standort 1A: Südtirol – Südhang: 810 m ü. NN	90
	9.	9.1.2 Standort 2A: Südtirol – Südhang: 1030 m ü. NN		

	9.1.3	Standort 3A: Südtirol – Südhang: 1190 m ü. NN	91
	9.1.4	Standort 4A: Südtirol – Südhang: 1390 m ü. NN	91
	9.1.5	Standort 5A: Südtirol – Südhang: 1550 m ü. NN	92
	9.1.6	Standort 6A: Südtirol – Südhang: 1880 m ü. NN	92
	9.1.7	Standort 7A: Südtirol – Südhang: 2060 m ü. NN	93
	9.1.8	Standort 1B: Südtirol – Nordhang: 820 m ü. NN	93
	9.1.9	Standort 2B: Südtirol – Nordhang: 1010 m ü. NN	94
	9.1.10	Standort 3B: Südtirol – Nordhang: 1250 m ü. NN	94
	9.1.11	Standort 4B: Südtirol – Nordhang: 1380 m ü. NN	95
	9.1.12	Standort 5B: Südtirol – Nordhang: 1630 m ü. NN	95
	9.1.13	Standort 6B: Südtirol – Nordhang: 1850 m ü. NN	96
9	.2 St	andorte Kollektiv Nordtirol	96
	9.2.1	Standort 1S: Nordtirol – Südhang: 1160 m ü. NN	96
	9.2.2	Standort 2S: Nordtirol – Südhang: 1400 m ü. NN	97
	9.2.3	Standort 3S: Nordtirol – Südhang: 1600 m ü. NN	97
	9.2.4	Standort 4S: Nordtirol – Südhang: 1780 m ü. NN	
	9.2.5	Standort 1N: Nordtirol – Nordhang: 1060 m ü. NN	
	9.2.6	Standort 2N: Nordtirol – Nordhang: 1190 m ü. NN	
	9.2.7	Standort 3N: Nordtirol – Nordhang: 1380 m ü. NN	
	9.2.8	Standort 4N: Nordtirol – Nordhang: 1620 m ü. NN	
	9.2.9	Standort 5N: Nordtirol – Nordhang: 1700 m ü. NN	
10	Li	teraturverzeichnis	102
11	A	nhang B	

1 Einleitung

1.1 Die Funktionen des Waldes

Die Anforderungen an den Wald durch den Menschen haben sich im Laufe der Zeit sehr stark geändert. Wurde früher im Wald vor allem gejagt und gesammelt, kam es mit der Sesshaftwerdung des Menschen zur Rodung der Waldflächen um freie Flächen für Weidebzw. Ackerland zu gewinnen. Später wurde der Wald immer mehr als Rohstofflieferant verwendet.

Heute hat der Wald durch das Wachsen von urbanen Räumen und Umweltbelastungen eine Vielzahl von Funktionen zu erfüllen, zu denen unter anderem folgende Punkte zählen.

- Luftfilterung und Produktion von Sauerstoff
- Erholungsraum für den Menschen
- Holzproduktion, Rohstofflieferant
- Beeinflussung des Wasserhaushaltes
- Lebensraum für Tiere und Pflanzen
- Stabilisierung des Klimas
- Schutz vor Elementargefahren wie Lawinen, Steinschläge, Bodenerosionen und starken Winden

Damit unser Wald diese Aufgaben auch in Zukunft erfüllen kann bedarf es einer nachhaltigen Nutzung. Der Begriff der forstlichen Nachhaltigkeit wurde zum ersten Mal zu Beginn des 18. Jh. vom deutschen Forstmann Hans Carl von Carlowitz¹ in seinem Werk *"haußwirthliche Nachricht und Naturmäßige Anweisung zur wilden Baum-Zucht [1]"* eingeführt.

Dabei wurde der Begriff nachhaltig lediglich darauf beschränkt, dass dem Wald nicht mehr Holz entnommen werden darf, als auch wieder nachwachsen kann [2].

Heute ist der Begriff der forstlichen Nachhaltigkeit eng an eine umfassende nachhaltige Entwicklung geknüpft, mit dem Ziel den Lebensraum Wald mit all seinen Funktionen auch für die nächsten Generationen zu erhalten.

1.2 Waldflächen in Österreich und Südtirol

Anmerkung: in den folgenden Punkten werden über die Waldflächen, Baumbestände, Nutzungsarten, Im- und Exporte,... kurze Angaben gemacht. Die Daten beziehen sich hauptsächlich auf Österreich, da es nicht gelungen ist für Südtirol in allen Punkten ähnliche Daten zu erhalten. Ein Vergleich mit Italien als Referenz für Südtirol wird nicht durchgeführt, da es zu nicht vergleichbaren Annahmen kommen könnte.

1.2.1 Situation in Österreich und Südtirol

In Österreich ist eine Fläche von 3.960.000 ha bewaldet. Das entspricht einer Fläche von 47,2 % der Gesamtlandesfläche. Aus Abbildung 1 geht deutlich hervor, dass in Österreich die Fichte mit mehr als 50 % Anteil die dominierende Baumart ist.

¹ Johann "Hannß" Carl von Carlowitz, (* 14. Dezember 1645, <u>http://de.wikipedia.org/wiki/Hans_Carl_von_Carlowitz - cite_note-0</u>+ 3. März 1714) [1]

Abbildung 1: Gesamtverteilung der Baumarten in Österreich [5]

Dabei ist die Bestockung mit Baumarten in Österreich nicht gleichmäßig verteilt. Durch die eingeschränkten Möglichkeiten der landwirtschaftlichen Nutzung steiler Berghänge, sind vor allem in alpinen Räumen dicht bewaldete Flächen vorhanden. Wachstumsbedingt sind in den Bergregionen vermehrt Nadelwälder und in den tieferen Regionen Laubwälder anzutreffen (Tabelle 1).

Baumart	< 900 m ü. NN	900 - 1200 m ü. NN	> 1200 m ü. NN
Fichte	25,6%	14,8%	17,3%
Tanne	1,4%	0,7%	0,3%
Lärche	1,1%	1,0%	2,0%
Kiefer	5,6%	0,5%	0,1%
sonst. NH	0,2%	0,0%	0,2%
Buche	7,6%	1,9%	0,4%
Eiche	1,8%	0,0%	0,0%
sonst. LH	9,5%	1,5%	0,6%
Sträucher,	3,9%	1,7%	0,3%

Tabelle 1: Baumarten Verteilung in Abhängigkeit zur Meereshöhen [5]

Die natürliche Waldgrenze liegt in den Zentralalpen Mitteleuropas bei rund 1700 bis 2000 m ü. NN. .

In Südtirol mit mehr als 40 % der Landesfläche über 2000 m ü. NN. zeichnet sich ein ähnliches Bild. Insgesamt sind 372.174 ha Fläche – das entspricht 50% der Landesfläche – bewaldet. Eine Verteilung der Baumarten in Südtirol weist ebenfalls die Fichte mit 61% als dominierende Baumart aus.

Abbildung 2: Gesamtverteilung der Baumarten in Südtirol [9]

1.2.2 Jährlicher Zuwachs und Nutzung in Österreich

Österreich hat einen Gesamtvorrat an Holz von 1,10 Mrd. Vfm (Vorratsfestmeter) zur Verfügung. Jährlich beträgt der Zuwachs rund 31,26 Mio. Vfm [5]. Vor allem im Kleinwald ist, wie aus Abbildung 4 ersichtlich, die Zuwachsrate mit insgesamt 19,55 Mio. Vfm [5] am höchsten. Aber nicht nur in Österreich sondern auch in Südtirol und anderen EU-Staaten ist der Zuwachs deutlich höher als die Nutzung.

Abbildung 3: Jährlicher Zuwachs nach Betriebsarten im Ertragswald [5]

Abbildung 4: Holz-Zuwachs und -Nutzung in Österreich nach Eigentumsarten [5]

Bei einer Gegenüberstellung von Zuwachs und jährliche Nutzung von gesamt 18,78 Mio. Vfm so ist zu erkennen, dass in Österreich lediglich 60 % des jährlichen Zuwachs genutzt werden.

Abbildung 5: Jährlicher Nutzung in Österreich nach Eigentumsarten [5]

	Europa		Welt		
Österreich AUT	Anteil AUT [%]	Rang AUT	Anteil AUT [%]	Rang AUT	
Industrielles Nadelrundholz					
Produktion (11,3x10 ⁶ fm)	3,2 %	8	1,3 %	16	
Import (6,9x10 ⁶ fm)	24,1 %	1	10,7 %	2	
Nadelschnittholz					
Produktion (8,3x10 ⁶ m ³)	7,6 %	4	3,3 %	10	
Export (5,7x10 ⁶ m ³)	9,1 %	4	6,4 %	5	

 Tabelle 2: Österreich im internationalen Vergleich, Stand 2009 [4]

Neben Slowenien zählen Österreich und Südtirol zu den am dichtest bewaldeten Gebieten Mitteleuropas [2]. Österreich gehört mit 5,7 Mio. m³ weltweit zu den fünftgrößten (!) Schnittholzexporteuren (der größte Nadel- Schnittholz-Exporteur ist Kanada mit 18,7 Mio. m³ (Stand 2009)) bzw. zum viertgrößten in Europa. Mit einer Menge von 1,6 Mio. m³ reiht sich Österreich an die zwölfte Stelle der weltweit größten Schnittholzimporteure, bzw. an die siebente Stelle in Europa (die größten Schnittholzimporteure sind die USA gefolgt von China, Japan und Deutschland).

Beim Import von Nadel-Rundholz rangiert Österreich mit 6,9 Mio. fm nach China weltweit an zweiter Stelle, und ist somit in Europa führend (!). Österreich importiert hauptsächlich Nadel Rundholz von den Nachbarländern Deutschland, Tschechien und der Schweiz. Deutlich kommt hier zum Ausdruck, dass somit in Österreich das Zuwachspotential wesentlich stärker genutzt werden könnte.

Zur erfolgreichen Reduktion der doch relativ hohen Importe von Nadelhölzern, könnten vor allem dicht bewaldete Hochwaldgebiete verstärkt bewirtschaftet und nachhaltig genutzt werden.

2 Zielsetzung

Über die Eigenschaften von Hölzern gibt es heute ein sehr breites Wissen, mit unterschiedlichen fundamentierten wissenschaftlichen Erkenntnissen. Damit der Werkstoff Holz auch als Baustoff eingesetzt werden kann, muss es den hohen Standard heutiger Regelwerke erfüllen. Um vor allem die Anforderungen der Tragfähigkeit und Gebrauchstauglichkeit einzuhalten, muss der Rohstoff Holz vorsortiert, bzw. in Festigkeitsklassen eingestuft werden.

Bei den derzeit üblichen maschinellen und visuellen Sortierverfahren zur Durchführung einer Klassifizierung ist die Ermittlung einer Vielzahl von Parametern erforderlich. An der Universität Innsbruck, Institut für Konstruktion und Materialwissenschaften am Arbeitsbereich Holzbau wird durch das Projekt Gebirgsholz – Wald ohne Grenzen untersucht, ob die Höhenlage des Wuchsortes und die damit einhergehenden klimatischen Veränderungen, feststellbare Auswirkungen auf die physikalischen und elastomechanischen Eigenschaften auf das Holz hat.

3 Programm und Durchführung der Arbeitsschritte

Die folgenden Kapitel werden in die 3 Arbeitspakete

- o AP1: Auswahl der Standorte und Gewinnung des Versuchsmaterials
- AP2: Maschinelle Sortierung
- AP3: Labortechnische Untersuchungen, Ergebnisse gegliedert.

3.1 AP1: Auswahl der Standorte und Gewinnung des Versuchsmaterials

3.1.1 Auswahl der Standorte für das Prüfmaterial

Das Versuchsmaterial wird aus den Regionen Navistal in Nordtirol und dem Pustertal in Südtirol gewonnen. Es handelt sich um Täler mit ausgeprägten Ost-West Ausdehnungen und annähernd gleichen Hanglagen. Für die Gewinnung der Prüfkörper in den Tälern, werden an insgesamt 22 Höhenstufen an den Nord- und Südhängen die Standorte ausgewählt. Genaue Angaben zu den Standort Bezeichnungen sind in Abbildung 6 ersichtlich.

Die Standorte bzw. Bäume wurden gemeinsam mit Spezialisten aus der Wald- und Forstwirtschaft ausgewählt. Dabei wird bei der Qualitätsansprache besonders auf die Astigkeit, Abholzigkeit, Brustholz-Durchmesser (BHD) und evtl. Schäden bzw. Verletzungen geachtet. Damit keine Bäume mit Rotfäule verwendet werden, wurde bereits vor dem Fällen ein sogenannter "Herzstich" vorgenommen, um an den Holzspänen bereits einen möglichen Pilzbefall zu erkennen. Die Wuchsgebiete müssen zusammenhängende Baumbestände und annähernd gleiche Hangneigungen haben. Nach der Auswahl der geeigneten Bäume werden das umliegende Gelände, die Hangneigungen, die Bodenbeschaffenheiten und die Kronendächer der ausgewählten Bäume genau dokumentiert. Nach dem Fällen der Versuchskörper und dem Entasten werden die Bäume mittels Maßband und Kluppe vermessen. Es wird dabei die Gesamtlänge des Baumes, die Abholzigkeit sowie das Baum-alter bestimmt. Zur Vermeidung von Rotfäule und Reaktionsholz vor allem im Stammbereich, werden die Prüfkörper an den ausgewählten Bäumen erst aus dem 2. Bloch (=Mittelbloch) nach ca. 4,5 m für die weiteren Untersuchungen verwendet.

Abbildung 6: Standorte der Prüfkörper Entnahmen

Abbildung 7: Gewinnung des Versuchsmaterials

Damit die Positionen der Prüfkörper im Stamm genau definiert und bis zu den labortechnischen Untersuchungen zurückverfolgt werden können, werden die Baumstämme sofort nach dem Fällen bzw. dem Auftrennen des Baumes in die einzelnen Bloche an der Bergseite mittels farblichen Kennzeichnungen markiert.

Abbildung 8: Prüfkörperentnahme und Kennzeichnung

Anhand all dieser Aufzeichnungen über die Physiologie jedes einzelnen Baumes und der Stammlage sollen bei den weiteren Untersuchungen eventuelle Zusammenhänge besser nachvollziehbar sein.

3.1.2 Einschnitt der Prüfkörper

Nach dem Fällen und Auftrennen der Baumstämme werden die Bloche ins Sägewerk gebracht. Der Einschnitt der Prüfkörper erfolgt mit einer Bandsäge nach einem vorab bestimmten Einschnittmuster gemäß Abbildung 8. Die anfallende Seitenware wird vom Sägewerk weiter verwendet. Bevor die Prüfkörper auf eine Feuchte von ca. 12 % technisch getrocknet werden, erfolgt eine genaue Nummerierung mit SignuMat® Kunststoff -Etiketten, um eine gesicherte durchgehende Nummerierung und eine eindeutige Zuordnung der Prüfkörper zu gewährleisten. Die Markierungen der Bergseiten erfolgen mittels Farbsprays.

Abbildung 9: Kennzeichnung und Einschnitt der Prüfkörper

Insgesamt konnten aus den Rundhölzern der 22 unterschiedlichen Standorte 476 Prüfkörper mit den Abmessungen von 48/138/4050 mm gewonnen werden. Davon 56 % aus dem Kollektiv Nordtirol (268 St.) und 44 % aus dem Kollektiv Südtirol (208 St.). Eine Auflistung der Anzahl der Prüfkörper je Standort ist in Tabelle 3 zu sehen.

Abbildung 10: Aufteilung der Kollektive

	Standorte	Kollektiv		Anzahl	Prozent
1A	810m - S (ST)	Südtirol - Südhang	S (ST)	16	3,36%
2A	1030m - S (ST)	Südtirol - Südhang	S (ST)	16	3,36%
3A	1190m - S (ST)	Südtirol - Südhang	S (ST)	16	3,36%
4A	1390m - S (ST)	Südtirol - Südhang	S (ST)	16	3,36%
5A	1550m - S (ST)	Südtirol - Südhang	S (ST)	16	3,36%
6A	1880m - S (ST)	Südtirol - Südhang	S (ST)	16	3,36%
7A	2060m - S (ST)	Südtirol - Südhang	S (ST)	16	3,36%
1B	820m - N (ST)	Südtirol - Nordhang	N (ST)	16	3,36%
2B	1010m - N (ST)	Südtirol - Nordhang	N (ST)	16	3,36%
3B	1250m - N (ST)	Südtirol - Nordhang	N (ST)	16	3,36%
4B	1380m - N (ST)	Südtirol - Nordhang	N (ST)	16	3,36%
5B	1630m - N (ST)	Südtirol - Nordhang	N (ST)	16	3,36%
6B	1850m - N (ST)	Südtirol - Nordhang	N (ST)	16	3,36%
1S	1160m - S (NT)	Nordtirol - Südhang	S (NT)	36	7,56%
2S	1400m - S (NT)	Nordtirol - Südhang	S (NT)	34	7,14%
3S	1600m - S (NT)	Nordtirol - Südhang	S (NT)	28	5,88%
4S	1780m - S (NT)	Nordtirol - Südhang	S (NT)	28	5,88%
1N	1060m - N (NT)	Nordtirol - Nordhang	N (NT)	28	5,88%
2N	1190m - N (NT)	Nordtirol - Nordhang	N (NT)	24	5,04%
3N	1380m - N (NT)	Nordtirol - Nordhang	N (NT)	28	5,88%
4N	1620m - N (NT)	Nordtirol - Nordhang	N (NT)	36	7,56%
5N	1700m - N (NT)	Nordtirol - Nordhang	N (NT)	26	5,46%
			Gesamt	476	100,00%

Tabelle 3: Bezeichnung und Anzahl der Prüfkörper je Standort

3.2 AP2: Maschinelle Sortierung

Die maschinelle Sortierung mit der nach DIN 4074-3 zugelassenen WEINIG Sortieranlage der Firma MiCROTEC erfolgt bei der Firma Theurl in Assling (Osttirol).

3.2.1 Entstapelung, Feuchtekontrolle und Wendestation [14]

Mit der Kipptisch - Entstapelung werden die Schnittholzpakete so sortiert, dass jedes Kantholz die weiteren Prozesse einzeln und in geordneter Reihenfolge die Sortieranlage durchlaufen kann.

Abbildung 11: Kipptisch-Entstapelung, maschinelle Sortierung

3.2.2 Sortierung [14]

Mitarbeiter der Firma Theurl sowie Herr DI Martin Bacher der Firma MiCROTEC® steuern und optimieren den Sortiervorgang. Im Zuge des Sortierprozesses werden die Kanthölzer auf eine Länge von 4050 mm abgekappt und vierseitig auf die Abmessungen 48 / 138 mm gehobelt. Es wird die Dichte sowie die Feuchtigkeit eines jeden einzelnen Versuchskörpers bestimmt und mittels "Hammerschlag" zu Längsschwingungen angeregt und anhand von optischen Schwingungsmessungen Festigkeits- und Steifigkeitsparameter bestimmt (ViSCAN, MiCROTEC). Des Weiteren werden mit Hilfe eines Röntgenscanners (Goldeneye 706, MiCROTEC) Inhomogenitäten im Holz bestimmt und gemeinsam mit den Ergebnissen des ViSCAN der "schwächste Querschnitt" (=predicted breaking point) ermittelt, der dann bei den labortechnischen Versuchen Verwendung findet. Anhand der beschriebenen Daten können die Prüfkörper je nach verwendeter Sortierkombination bereits in Festigkeitsklassen eingestuft werden (Maschinelle Sortierung).

Am Ende des Sortierprozesses werden alle Prüfkörper erneut nummeriert sowie die Bergseiten wiederum farblich gekennzeichnet. Im Anschluss erfolgt nochmals eine manuelle Kontrolle und die Bestimmung der Rohdichte.

Abbildung 12: Maschinelle Sortierung und Kennzeichnung der Prüfkörper

3.3 AP3: Labortechnische Untersuchungen

3.3.1 Visuelle Sortierung

Die Einstufung des Holzes in Sortierklassen anhand makroskopischer Strukturmerkmale erfolgt mit Hilfe der ÖNORM DIN 4074-1 [11]. Die Prüfkörper mit den Abmessungen 48 / 138 / 4050 mm sind auf Grund ihrer Abmessungen in die Schnittholzart der Kanthölzer einzustufen (Tabelle 4) und nach dessen Kriterien zu sortieren.

	Dicke <i>d</i>				
Schnittholzart	bzw.	Breite <i>b</i>			
	Höhe <i>h</i>				
Latte	d ≤ 40 mm	b ≤ 80 mm			
Brett ª	d ≤ 40 ^ь mm	b ≥ 80 mm			
Bohle ª	d > 40 mm	b > 3·d			
Kantholz	b ≤ h ≤ 3·b	b > 40 mm			
^a Vorwiegend hochkant biegebeanspruchte Bretter und Bohlen sind wie Kanthölzer zu sortieren und					
entsprechend zu kennzeichnen					
^b Dieser Grenzwert gilt nicht für Bretter für die Verwendung von Brettschichtholz					

Taballa (Cabaitthalabaaaiabaung gamäß [11]

Die Prüfkörper werden nach den Kriterien in Tabelle 5 trockensortiert und den Sortierklassen S 7TS – FI bis S 13TS – FI zugeordnet. Durch die Sortierklassen kann eine Zuordnung der Prüfkörper in Festigkeitsklassen (Tabelle 6) durch die EN 14081 in das System von Festigkeitsklassen der EN 338 erfolgen.

Sortiermerkmale	Sort	Sortierklassen für Kanthölzer				
	S 7	S 10	S 13			
1. Äste	0,6 · (b bzw. h)	0,4 · (<i>b</i> bzw. <i>h</i>)	0,2 · (<i>b</i> bzw. <i>h</i>)			
2. Faserneigung	≤ 12 %	≤ 12 %	≤7%			
3. Markröhre	zulässig	zulässig	nicht zulässig			
4. Jahrringbreite	≤ 6 mm	≤ 6 mm	≼ 4 mm			
5. Schwindrisse	≤0,5 ·b	≤0,5 · b	≼ 0,4 · b			
6. Verfärbungen, Fäule						
- Bläue	zulässig	zulässig	zulässig			
 nagelfeste braune und rote 	≤ 0,4 ·U	≤ 0,4 ·U	≼ 0,2 ·U			
Streifen						
Genauere Angaben zu den Sortier	kriterien werden in 3.3.2	2 gegeben.				
<i>b</i> Querschnittsbreite						
hQuerschnittshöhe	hQuerschnittshöhe					
<i>U</i> Querschnittsumfang						
SSortierklasse						
TStrockensortiertes Holz; Schni	ttholz das bei einer Feuc	chte von u ≤ 20 % sortier	t wird			
<i>FI</i> Fichtenholz						

Tabelle 5: Sortierkriterien an die Prüfkörper bei der visuellen Sortierung nach [11] (Auszug)

Aufgrund einer sehr genauen Prüfköperauswahl, dem sorgfältigen Einschnitt und der technischen Trocknung sind für die Zuordnung der Prüfkörper in Sortierklassen zumeist die Anforderungen an die Äste maßgebend. Konnte das Holz keiner Sortierklasse zugeordnet werden, wird es als Ausschuss (REJ) gekennzeichnet.

Tabelle 6: Zuordnung von visuell sortiertem Schnittholz zu Festigkeitsklassen von Vollholzquerschnitten

Sortierklasse nach DIN 4070-1	Festigkeitsklasse	Charakteristische Biegefestigkeit f _{m,k} nach EN 338 [24]
S 7	C18	18 N/mm²
S 10	C24	24 N/mm²
S 13	C30	30 N/mm²

3.3.2 Sortiermerkmale

3.3.2.1 Äste

Äste mit Durchmessern unter 5 mm bleiben unberücksichtigt, die Ast Rinde wird dabei dem Ast hinzugerechnet.

Es erfolgt keine Unterscheidung zwischen fest verwachsenen, nicht fest verwachsenen Ästen bzw. Astlöchern. Eine diesbezüglich genauere Betrachtungsweise nach den Tegernseern Gebräuchen wird in Kapitel 3.3.6 durchgeführt.

Die Bestimmung der Astigkeit erfolgt nach Gleichung (1) entsprechend den Bezeichnungen in Abbildung 13.

$$A = \max\left\{\frac{d_1}{b}; \frac{d_2}{h}; \frac{d_3}{b}; \frac{d_4}{h}\right\}$$
(1)

Abbildung 13: Ermittlung der Astparameter im Zuge der visuellen Sortierung [11]

3.3.2.2 Faserneigung

Die Faserneigung wird gemäß Gleichung (2) entsprechend den Bezeichnungen in Abbildung 14 berechnet.

$$F = \frac{x}{y} \cdot 100$$
 (2)

Lokale Faserabweichungen die von Ästen verursacht werden bleiben unberücksichtigt. Anmerkung: Der Einfluss der Faserneigung war in keinem der Prüfkörper maßgebend.

Abbildung 14: Bestimmung der Faserneigung nach ÖNORM DIN 4074-1 [11]

3.3.2.3 Markröhre

Es erfolgt eine Unterscheidung der Prüfkörper mit oder ohne Markröhre. Ist die Markröhre nur teilweise entlang des Prüfkörpers vorhanden, gilt die Markröhre als vorhanden. Das Vorhandensein der Markröhre ist lediglich vom Zuschnitt der Prüfkörper abhängig. Es kann hier zwischen herzfreiem und herzgetrenntem Schnittholz unterschieden werden. *Herzgetrennt:* "...Bezeichnung für Schnittholz das durch Auftrennen eines Stammes in Längsrichtung derart entstanden ist, dass ein Sägeschnitt durch das Herz bzw. die Markröhre geht. ..." [14]

Herzfrei: "Bezeichnung für Schnittholz das ohne Herzanteil ist. Dieses Holz ist qualitätsmäßig besser als herzhaltiges oder herzgetrenntes Holz..." [14]

Anm.: Zu Beginn des Projekts hat man sich für einen zumindest herzgetrennten Einschnitt entschieden. Später hat sich allerdings im Labor gezeigt, dass sehr viele Querschnitte mit Markröhre im Inneren des Querschnitts vorhanden waren, und somit eine Einstufung in die Sortierklasse S 13 von vornhinein ausschließt.

3.3.2.4 Mittlere Jahrringbreiten

Die Festigkeit hängt sehr stark von der Rohdichte des Holzes ab. Da bei der rein visuellen Sortierung dieser Parameter nicht erfasst werden kann, besteht nach ÖNROM DIN 4074-1 [18] die Möglichkeit, diese über die mittlere Jahrringbreite indirekt abzuschätzen. Die mittlere Jahrringbreite kann nach Gleichung (3) mit den Bezeichnungen wie in Abbildung 15 dargestellt, ermittelt werden.

$$J_{br} = \frac{n}{l}$$
(3)

Dabei ist

n Anzahl der Jahrringe $l = l_1 + l_2$ Messstrecke gemäß Abbildung 15

Befindet sich die Markröhre im Querschnitt bleiben die ersten 25 mm von der Markröhre entfernt unberücksichtigt.

Abbildung 15: Ermittlung der mittleren Jahrringbreiten nach ÖNORM DIN 4074-1 [11]

Abbildung 16: Ermittlung der mittleren Jahrringbreiten mit Risslupe

Für die Auszählung der Jahrringe wird teilweise eine Risslupe auf Grund der sehr feinen Jahrringlagen verwendet (Abbildung 16).

3.3.2.5 Schwindrisse

Durch Schwindrisse wird die zur Übertragung von Schubkräften erforderliche Breite reduziert. Zur Beurteilung der Auswirkungen eines Risses auf die Eigenschaften sind die Risstiefen, und die dadurch entstehenden Querschnittsschwächungen relevant. Durch die sorgfältige Bearbeitung der Prüfkörper kam es nur an einem sehr geringen Anteil von Prüfkörpern zu Schwindrissen. Sofern es zu Schwindrissen gekommen ist, sind diese kürzer als 100 cm und damit gemäß ÖNORM DIN 4074-1 [18] nicht zu berücksichtigen. Da bei allen Prüfkörpern keine Blitzrisse und Ringschäle vorhanden waren, werden diese Rissarten hier nicht weiter angeführt.

3.3.2.6 Verfärbungen und Fäule

Bläue entsteht durch den Befall mit Bläuepilzen, die sich ausschließlich von den Zellinhaltsstoffen ernähren. Da sie keine Auswirkungen auf die Festigkeit von Schnittholz haben ist Bläue unbegrenzt zulässig, und stellt vielmehr ein optisches Problem dar [13] Rotstreifigkeit wird von Pilzen verursacht die zu Beginn ausschließlich von den Zellinhaltsstoffen leben. Ein Angriff der Zellwände tritt erst bei fortschreitendem ein. Solange die Verfärbungen nagelfest sind, führen sie zu keiner relevanten Festigkeitsabminderung. Ein Fortschreiten der Rotstreifigkeit ist bei trockenem Holz auszuschließen [13].

Braun und Weißfäule sind an ihrem fleckigen Erscheinungsbild zu erkennen. Die holzzerstörenden Pilze ernähren sich von den Zellwänden, und sind deshalb bei Schnitthölzern für den Einsatz in tragenden Konstruktionen generell nicht zulässig [13]. Verfärbungen werden an den Oberflächen rechtwinklig zur Längsachse gemessen. Der Anteil der verfärbten Streifen wird an der Stelle mit der maximalen Ausdehnung nach Gleichung (4) mit den Bezeichnungen nach Abbildung 17 ermittelt.

$$V = \frac{v_1 + v_2 + v_3}{2 \cdot (b+h)}$$
(4)

Abbildung 17: Messung von Verfärbungen, Bläue und Druckholz nach ÖNORM DIN 4074-1 [11]

3.3.2.7 Druckholz

Druckholz² kann in Längsrichtung des Holzes unterschiedliche Ausdehnungen annehmen. Für die Ermittlung des Ausmaßes gelten dieselben Bestimmungen wie in Kapitel 3.3.2.6 beschrieben.

Druckholz ist deutlich durch eine dunkle, rotbraune Verfärbung in auf Druck beanspruchten Bereichen von Nadelholzstämmen erkennbar. Zur Verfärbung der Druck beanspruchten Bereiche kommt es, da sich die Jahrringe verbreitern um die nötige Verfestigung zu erreichen. Häufig kommt es zur Ausbildung von Druckholz an der windabgekehrten Seite, bei vorhandenen Schiefstellung (sehr häufig in Hanglagen), sowie an der Unterseite von stark ausladenden Ästen.

3.3.2.8 Haselfichten

Haselwuchs ist gekennzeichnet durch V-förmige Einbuchtungen der Jahrringgrenzen zur Markröhre. Haselwuchs entsteht durch örtliche Zuwachsstörungen des Kambiums, was zu linsenförmigen (wolkenartigen) Einbuchtungen führt. Die Einbuchtungen liegen radial aneinander gereiht an den Holzstrahlen. Haselwuchs kommt vor allem bei Fichten in hochalpinen Lagen vor. Häufig wird in diesem Zusammenhang von Haselfichten gesprochen. Die Haselfichte wird bevorzugt als Tonholz im Instrumentenbau eingesetzt. Während der visuellen Sortierung ist bei einigen Prüfkörpern ein leichter Haselwuchs aufgetreten. Dabei tritt dieser Anomalie der Wuchsform sehr häufig nur lokal in bestimmten Stammbereichen auf.

Abbildung 18: Haselwuchs

² Überbegriff: Reaktionsholz; Bezeichnung sehr häufig auch als Buchs oder Rotholz

3.3.3 Holzfeuchte und Rohdichte

Im Zuge der visuellen Sortierung werden zusätzlich die Feuchtegehalte nach ÖNORM EN 13183-2 [22] mit Hilfe des elektrischen Widerstands - Messverfahren für die Durchführung der Ultraschallmessungen bestimmt. Um die Genauigkeiten der Messergebnisse zu steigern werden die Einschlag-Elektroden des Messgerätes am Anfang in der Mitte und am Ende der Prüfkörper eingeschlagen, und daraus der Mittelwert der Holzfeuchte bestimmt. Zur Ermittlung der Rohdichten werden die Prüfkörper abgewogen. Mit diesen Daten können in einem nächsten Schritt die Ultraschallmessungen an den Prüfkörpern durchgeführt werden.

Abbildung 19: Bestimmung der Holzfeuchten und Ultraschallmessungen im Zuge der visuellen Sortierung

3.3.4 Ultraschall-Messungen

Ein in der Praxis sehr häufig eingesetztes zerstörungsfreies Verfahren zur Abschätzung von mechanischen Kennwerten für Schnitthölzer ist die Ultraschallaufzeitmessung (Durchschallungsverfahren (Abbildung 19)). Das Ultraschallverfahren beruht darauf, dass sich Schwingungen in festen Körpern in Abhängigkeit von deren physikalischen und mechanischen Eigenschaften unterschiedlich schnell ausbreiten.

Sofern die Abmessungen eines Prüfkörpers klein im Vergleich zu den Wellenlängen sind darf die Wellenausbreitung wie folgt bestimmt werden

$$v^2 \approx \frac{E}{\rho}$$
 (5)

Zu beachten ist, dass diese Beziehung nur bei ideal homogen orthotropen Materialien Gültigkeit besitzt. Bei Holz mit all seinen Inhomogenitäten können deshalb die Messgrößen nur geschätzt werden.

Die Auswirkungen der Holzfeuchte sowie der Holztemperatur auf die Schallgeschwindigkeit ist ebenfalls zu berücksichtigen, und für die Auswertung auf eine Holzfeuchte von u = 12 % und eine Temperatur von T = $12 \degree$ C zu beziehen.

Einfluss der Holzfeuchte auf die Schallgeschwindigkeit

Mit zunehmendem Feuchtegehalt des Holzes nimmt die Ultraschallgeschwindigkeit ab, und nähert sich der Ausbreitungsgeschwindigkeit im Wasser. Nach Gleichung (6) für eine Holzfeuchte u < 28 % erfolgt die Umrechnung auf v₁₂ in [m/s]

$$\mathbf{v}_{12} = \frac{\mathbf{v}_{u}}{1 - 0.0053 \cdot (u - 12)} \tag{6}$$

Dabei ist

 $v_{\rm u}$ $${\rm Gemessene}$ Ultraschallgeschwindigkeit bei einer Holzfeuchte u und Temperatur T $[{\rm m/s}]$

 v_{12} Ultraschallgeschwindigkeit bei u = 12 % [m/s]

u Holzfeuchte [%]

Einfluss der Temperatur

Da die Holzfeuchte unter anderem von der Temperatur beeinflusst wird, kommt es zur gegenseitigen Überlagerung dieser Faktoren. Mit der Gleichung (7) kann die Referenz-Ultraschallgeschwindigkeit v_{12/20} in [m/s] bestimmt werden

$$\mathbf{v}_{12/20} = \frac{\mathbf{v}_{12}}{\left[1 - 8 \cdot 10^{-4} \cdot (\mathbf{T} - 20)\right]}$$
(7)

Dabei ist

 $_{v_{12/20}}$ Referenz-Ultraschallgeschwindigkeit bei u = 12 % und T = 20 °C [m/s]

 v_{12} siehe Gleichung (6)

T Holztemperatur zum Zeitpunkt der Messung [°C]

Einfluss der Lage des Messpunktes

Bei den durchgeführten Biegeversuchen ist die häufigste Versagensart im Zugbereich des Querschnittes, vor allem in den Nahbereichen von Ästen auf Grund von Spannungskonzentrationen, verursacht durch Faserumlenkungen aufgetreten. Da gemäß den Regelwerken die Prüfkörperanordnungen willkürlich erfolgen soll, werden die an den Prüfkörpern markierten Bergseiten abwechselnd oben (Druckbereich) bzw. unten (Zugbereich) angeordnet. Genauere Angaben zum Einfluss der Position des Messpunktes am Querschnitt sind im Anhang B dieses zu finden.

Die Messungen erfolgen mit dem Ultraschallmessgerät *Sylva Test* an drei Messstellen in den Viertelpunkten des Querschnitts. Die Berechnung von E_{dyn} mit den korrigierten Werten aus den Gleichungen (6) und (7) ist wie in Gleichung (8) zu bestimmen.

$$E_{dyn} = v_{12/20}^2 \cdot \rho \tag{8}$$

Dabei ist

 E_{dyn} Dynamischer E-Modul [N/mm²]

 $\mathbf{v}_{12/20}$ korrigierte Ultraschallmessungen nach Gleichung (7)

ρ Rohdichte zum Zeitpunkt der Messung [kg/m³]

Holzbaulehrstuhl, Universität Innsbruck

Die Ausbreitungsgeschwindigkeit der Schallwellen ist noch von den folgenden Faktoren abhängig

- o Geometrie des Prüfkörpers,
- o Materialart, Inhomogenitäten in der Gefügematrix,
- o Art der Schalleinleitung (Kopplung) über die Konusköpfe, Sender und Empfänger,
- Lagerung während des Prüfvorgangs, usw.

Für die Auswertung der Messergebnisse wird hier – wie in der Praxis üblich – lediglich der Messwert in Querschnitts-Mitte verwendet. Genauere Untersuchungen zum Einfluss der Position der Messung am Querschnitt wurden ebenfalls durchgeführt. Ergebnisse dazu siehe [23] bzw. Anhang A dieses Berichtes

3.3.5 Zuschnitt der Prüfkörper

Nach der visuellen Sortierung und der genauen Dokumentation der makroskopischen Holzeigenschaften werden die Prüfkörper anhand der Ast – Daten aus der maschinellen Sortierung für die weitere Durchführung der Biegeprüfungen gemäß EN 408 [12] auf eine Länge von $\ell = 18 \cdot h + 2 \cdot (\ge h/2)$ zugeschnitten. Dabei wird der 2630 mm lange Prüfkörper so aus den 4050 mm langen Prüfkörper herausgeschnitten, dass im mittleren Drittel der "schwächste Querschnitt" (="prognostizierte Bruchstelle" (lower point)) zu liegen kommt (Abbildung 20). Durch die Lasteinleitungen in den Drittelpunkten des Prüfkörpers bei der Durchführung von 4-Punkt-Biegeversuchen nach EN 408 [12] kommt es zur Lage der "prognostizierten Bruchstelle" im Bereich der konstanten Momenten – Beanspruchung. Nach dem Zuschnitt erfolgt erneut die Übertragung der Markierungen für die Bergseiten sowie der Prüfkörpernummern, und die erforderliche Klimatisierung im Normklima bei 20 ± 3 °C und 65 ± 5 % rel. Lf. .

Abbildung 20: Zuschnitt der Biege-Prüfkörper

Abbildung 21: Klimatisierung der Biegeprüfkörper, Holzfeuchte Messungen

3.3.6 Astparameter

Äste haben sehr große Auswirkungen auf die strukturellen Eigenschaften des Holzes. Sie können bei Nadelhölzern eine bis zu 100 % höhere Rohdichte [17] als das sie umgebende Holz aufweisen. Durch Äste kommt es zu Faseränderungen im Holz. Durch die entstehenden Inhomogenitäten kommt es bei Lasteinwirkungen zu Spannungskonzentrationen, die sehr häufig zum Bruch von Hölzern im Nahbereich von Ästen führen können. Mit zunehmendem Astanteil sinkt vor allem die Zugfestigkeit von Holzquerschnitten.

Zur genauen Ermittlung der Astparameter vor allem im Prüfbereich und den damit verbundenen Auswirkungen auf die mechanischen Eigenschaften, werden alle Äste mit Durchmessern d ≥5 mm, mit Hilfe des Web Knot Calculator v2.0 (MiCROTEC®) geometrisch erfasst. Die Ermittlung der Ast Maße hat nach DIN 52181 auf ±1 mm genau zu erfolgen. Für jeden einzelnen Ast werden die folgenden Parameter dokumentiert (siehe dazu Abbildung 22):

- o Projekt-Name
- o Prüfkörper-Nummer
- o Prüfkörper Abmessungen
- Holzart
- o laufende Astnummer
- o x-Koordinate des Astes (Stablängsachse)
- Lage des Astes im Querschnitt (projizierte Fläche des Astes (schwarze Fläche in Abbildung 22))
- Astdurchmesser (d_{min})
- Marktröhre im Querschnitt (j/n)

Mit Hilfe der Eingabedaten werden die folgenden Astparameter ermittelt.

DEK (Durchmesser Einzelast Kantholz)

Der Parameter *DEK* ist der Wert für den größten Verhältniswert des Einzelastdurchmessers zur entsprechenden Querschnittsabmessung (Höhe bzw. Breite) an denen der Ast liegt (Abbildung 23) [16].

Abbildung 23: Parameter für die Ermittlung von DEK [16]

tKnot (Total Knot)

Der Parameter *tKnot* wird aus dem Verhältnis projizierte Astfläche zur Querschnittsfläche ermittelt (Abbildung 24) [16].

Abbildung 24: Parameter zur Ermittlung von tKnot [16]

mKnot (Marginal Knot)

Der Parameter *mKnot* wird aus dem Verhältnis der gesamten projizierten Astflächen die in den äußeren Vierteln des Querschnittes liegen, zu einem Viertel der Querschnittsfläche berechnet (Abbildung 25) [16].

$$mKnot = \frac{A_{Knot, proj, marge}}{\frac{1}{4} \cdot b \cdot h}$$
(11)

Dabei ist

A_{Knot,proj.,marge}

roi...marge Anteil der Astfläche in den Äußeren Vierteln (siehe auch Abbildung 25) [16].

Abbildung 25: Parameter für die Ermittlung von mKnot [16]

tKAR (total Knot Area Ratio)

Der Parameter *tKAR* wird aus dem Verhältnis der gesamten projizierten Astflächen in einem Bereich von 150 mm (Einflussbereich), zur Gesamtfläche des Querschnitts gebildet. Überlappende Astflächen werden dabei nur einfach gezählt [16].

Abbildung 26: Parameter für die Ermittlung von tKAR [16]

mKAR (Marginal Knot Area Ratio)

Der Parameter *mKAR* wird aus dem Verhältnis der gesamten projizierten Astflächen in den äußeren Vierteln des Querschnitts in einem Bereich von 150 mm (Einflussbereich), zu einem Viertel der Querschnittsfläche gebildet. Überlappende Astflächen werden dabei nur einfach gezählt [16].

Abbildung 27: Parameter für die Ermittlung von mKAR [16]

Ast Ansprachen

Neben den genauen Erfassungen der Geometrien werden auch noch die Äste kategorisiert. Es wird zwischen gesundem, fest verwachsenem (f), losem Ast bzw. Fehlast (l) und schwarzen Ästen unterschieden (s).

Nach den Tegernseern Gebräuche gilt die Definition:

"Ein fester schwarzer oder schwarz umrandeter Ast gilt als noch gesund, und fest verwachsen, wenn er mindestens auf einer Seite des Brettes oder Kantholzes zur Hälfte des Umfanges fest verwachsen ist [15]..."

(f)

Abbildung 28: Dokumentation und Vermessung der Äste im Labor

3.4 Biegeprüfungen

3.4.1 Klimatisierung

Während der Klimatisierung der Prüfkörper in den Klimaräumen der TVFA Innsbruck bei einem vorgegebenen Normklima von (20 ± 2) °C und (65 ± 5) % relativer Luftfeuchte [12], erfolgen die Ermittlungen der Astparameter sowie die Ultraschallmessungen und die Abschätzung des Feuchtegehaltes nach ÖNORM EN 13183-2 mit Hilfe des elektrischen Widerstand-Messverfahren [22] und die Berechnung der Rohdichte.

3.4.2 Ermittlung des globalen Biege-Elastizitätsmoduls

Die Ermittlung erfolgt gemäß ÖNORM EN 408 [12] mit Hilfe der Gleichung (14)

$$E_{m,g} = \frac{l^3 \cdot (F_2 - F_1)}{b \cdot h^3 \cdot (w_2 - w_1)} \cdot \left[\frac{3 \cdot a}{4 \cdot l} - \left(\frac{a}{l} \right)^3 \right]$$
(14)

Dabei ist

E _{m,g}	Globaler Biege Elastizitätsmodul [N/mm²]
1	Spannweite des Prüfkörpers $1 = 18 \mathrm{h} [\mathrm{mm}]$
$F_2 - F_1$	Laststeigerung im linearen Bereich der Last-Verformungs-Kurve
$w_{2} - w_{1}$	Verformungszunahme entsprechend F_2-F_1 [mm]
a	Abstand der Lasteinleitung zum Auflagerpunkt $a=6h$ [mm]
b	Prüfkörperbreite [mm]
h	Prüfkörperhöhe [mm]

Die Prüfkörper werden direkt aus der Klimakammer auf den Biegetisch aufgelegt, ausgerichtet sowie die Induktiven Wegaufnehmer zur Messung der Verformungen angebracht. Für die Bestimmung des globalen E-Moduls werden zwei Wegaufnehmer an der linken und rechten Seite in der neutralen Faser des Prüfkörpers angebracht, und die Verformungen in einem Lastbereich von kleiner gleich 0,1·F_{max} und mindestens 0,4·F_{max} aufgezeichnet. Zur Vermeidung von Biegedrillknicken finden zusätzliche Kippsicherungen aus Metall Verwendung.

Neben dem globalen E-Modul E_{m,g}wurde auch der lokale E-Modul E_{m,l}, um den Einfluss plastischer Verformungen in den Bereichen lokaler Lasteinleitungen, sowie die Auswirkungen der Schubverformungen in den Querkraftbereichen bestimmt. Da in den entsprechenden Normen zur Zuordnung von Hölzern in Festigkeitsklassen der globale E-Modul zur Einstufung zu verwenden ist, wird in diesem Projekt auf die Messergebnisse des lokalen E-Moduls nicht weiter eingegangen.

Abbildung 29: Durchführung der Biegeversuche (hier ohne Kippsicherung)

3.4.3 Ermittlung der Biegefestigkeit

Die Abmessungen der Prüfkörper für die Ermittlungen der Biegefestigkeiten entsprechen jenen für die Bestimmung des globalen E-Moduls. Die Prüfgeschwindigkeit ist so festgelegt, dass der Bruch innerhalb von 300 ± 120 sec eintritt (Abbildung 30).

Die Berechnung der Biegefestigkeit fm erfolgt nach EN 408 [12] mit folgender Gleichung erfolgen

$$f_{m} = \frac{\mathbf{a} \cdot F_{max}}{2 \cdot W}$$
(15)

Dabei ist

- fm Biegefestigkeit des Prüfkörpers [N/mm²]
- a Abstand zwischen Lasteinleitung und Auflager [mm]
- F_{max} Bruchlast des Versuchskörpers [N]
- W Widerstandsmoment [mm³]

Abbildung 30: Kraft-Zeit und Kraft-Weg Diagramme aus den Biegeversuchen

3.4.4 Darrtrocknung, Bestimmung der Rohdichte

Die Ermittlung der Darrdichte erfolgt gemäß ÖNORM EN 13183-1 [10] direkt im Anschluss an den Biegeversuch. Dafür wird aus dem Prüfkörper ein Stück Schnittholz entnommen. Der Prüfkörper muss eine Länge von mindestens 20 mm in Faserrichtung aufweisen, und den gesamten Querschnitt des Schnittholzes umfassen und mindestens 300 mm vom Prüfkörper Ende entfernt sein. Der Versuchskörper muss frei von verkientem Holz, Harzgallen und Ästen sein. Unmittelbar nach dem Herausschneiden wird die Masse des Prüfkörpers mit einer Waage mit einer erforderlichen Genauigkeit von ± 0,01 g ermittelt (siehe Abbildung 31). Die Ermittlung der Abmessungen erfolgt mit Hilfe einer elektronischen Schublehre.

Abbildung 31: Arbeitsschritte für die Durchführung der Darrtrocknung

Anhand der Darrtrocknung wird die Rohdichte zum Zeitpunkt der Biegeprüfungen bestimmt. Nach EN 384 [19] ist die Rohdichte auf eine Holzfeuchte von u = 12 % zu beziehen. Je Prozentpunkt Feuchtunterschied ist die Rohdichte um 0,5 % zu erhöhen bzw. zu reduzieren.

$$\rho_{12} = \frac{m_u}{V_u} \cdot [1 - 0,005 \cdot (u - 12)]$$
⁽¹⁶⁾

Dabei ist

 ρ_{12} Rohdichte bei einer Feuchte von u = 12 % [kg/m³]

- m_{u} Masse des Prüfkörpers mit der Feuchte u [kg]
- V_n Volumen des Prüfkörpers mit der Feuchte u [m³]
- u Feuchtegehalt des Prüfkörpers [%]

4 Spätholzanalyse

4.1 Allgemeines

Bäume bilden während der Wachstumsperiode in radialer Richtung jährlich eine Zuwachszone in Form eines Jahrringes aus. Dabei bildet sich am Anfang Frühholz (FH) und am Ende der Wachstumsperiode Spätholz (SH) aus. Frühholz besteht aus dünnwandigen weitporigen Holzfasern, die vor allem den Transport von Wasser und Nährstoffen übernehmen. Spätholz ist aus dickwandigen, engporigen Holzzellen aufgebaut, die der Verfestigung des Baumes dienen. Die Breite eines Jahrringes setzt sich aus der Summe der Breiten des Frühholzes und Spätholzes zusammen. Die Jahrringe ändern sich dabei von Ring zu Ring, ebenso wie die Dicken von Früh- und Spätholz. Die Breiten der einzelnen Jahrringe sind hauptsächlich von den Faktoren Klima, Boden, Holzart, Standort, Schädigungen und kambiales Stammalter abhängig [6]. Die Jahrringbreiten ändern sich im radialen Verlauf des Stammquerschnittes vom Mark bis zum äußersten (jüngsten) Jahrring. Auch entlang des Stammverlaufes verringern sich die Jahrringbreiten vom Stammfuß bis zur Krone. Hölzer mit geringen Zuwachsraten werden als eng- oder feinringig, andere mit größeren Breiten als weit- bzw. grobringig bezeichnet.

Der Übergang zu den Wachstumsperioden ist zwischen Früh- und Spätholz kontinuierlich, jener am Ende einer Wachstumsperiode erfolgt abrupt (Abbildung 32).

Abbildung 32: Frühholz, Spätholz und Rohdichteprofil

Die Rohdichten von Fichtenholz betragen bei Frühholz in etwa 300 kg/m³ und bei Spätholz rund 1000 kg/m³. Das um etwa 3-Mal so dichte Spätholz "trägt" aber auch - bei gleichen Breiten ca. 3-Mal so viel [2]. Die Jahrringbreiten bzw. Spätholzbreiten können als indirekte Parameter für die Rohdichtebestimmungen sowie die Festigkeiten verwendet werden. Das kann auch durch den statistischen Zusammenhang (Korrelationen) aus Tabelle 7 abgelesen werden.

abette 7. Dezlendingen zwischen Sammigparametern und Kondichte von Kiefernhötz [ö.							
Eigenschaften	Rohdichte	Jahrringbreite	Frühholzbreite	Spätholzbreite			
Rohdichte	1,00	-	-0,48	0,30			
Jahrringbreite	-	1,00	0,97	0,64			
Frühholzbreite	-0,48	0,97	1,00	0,43			
Spätholzbreite	0,30	0,64	0,43	1,00			

Tabelle 7: Beziehungen zwischen Jahrringparametern und Rohdichte von Kiefernholz [8]

Der Tabelle 7 ist auch zu entnehmen, dass es nur mäßige Zusammenhänge zwischen den Frühholz- bzw. Spätholzbreiten mit der Rohdichte gibt. Das negative Vorzeichen bei R=-0,48 gibt an, dass bei zunehmender Frühholzbreite die Dichte abnimmt.

Im Allgemeinen bildet sich bei Nadelholz in den ersten 10 bis 20 Jahren³ juveniles Holz aus. Dieser Bereich ist durch einen deutlich unterschiedlichen Holzaufbau als spätere Wachstumsphasen gekennzeichnet. Juveniles Holz weist im Allgemeinen eine deutlich geringere Rohdichte als markfernes Holz auf. Auch die Variabilität der Jahrringbreiten ist marknahe deutlich stärker ausgeprägt. Durch die geringere Rohdichte und erhöhte Astigkeit sind die elasto-mechanischen Eigenschaften des Holzes im marknahem Bereich geringer einzustufen als Querschnitte aus den Randzonen des Stammquerschnittes.

Verwendetes Messverfahren:

Die Messung erfolgt mit Hilfe der Software LignoVision[®] zur Durchführung von Jahrringanalysen. Dafür werden die Oberflächen der Prüfkörper mit den Abmessungen 48/138/25 mm mit zunehmend feiner werdendem Schleifpapier bearbeitet. Anschließend werden alle Prüfkörper hochauflösend fotografiert, und mit der angegebenen Software kalibriert und graphisch analysiert.

Abbildung 33: Spätholzanalyse LignoVision® (Prüfkörper ID 10)

³ Die angegebenen Werte in der Literatur für die Definition von Juvenilem ("jugendliches") Holz schwanken hier sehr stark

5 Quell- und Schwindverhalten

Holz ist ein hygroskopischer Werkstoff und unterhalb des Fasersättigungsbereichs kommt es bei einer Feuchteaufnahme zu einer Ausdehnung, zum sogenannten Quellen des Holzes durch Einlagerungen der Wassermoleküle in den Zellwänden. In umgekehrter Richtung, also bei einer Feuchteabgabe kommt es zu einer Volumenkontraktion durch die ein Schwinden der Holzstruktur einhergeht. Da Holz annähernd als orthotroper Werkstoff betrachtet werden kann, treten auch in den drei Hauptrichtungen unterschiedlich große Quell- und Schwindmaße auf (Tabelle 8) [17].

Für den Vorgang zur Bestimmung der maximalen Quellmaße werden die Probekörper mit den Abmessungen von 20/20/20 mm für das radiale und tangentiale Quellen, und für das longitudinale Quellen mit den Abmessungen 20/20/100 mm herangezogen. Dies entspricht weitestgehend den Probenabmessungen, welche in der DIN 52 184 [20] als Mindestmaße angegeben sind.

	Tabelle 8: Maximales Quellmaß und differentielle Quellung von Holzarten nach [17]								
Holzart	Holzart Maximales				Quellung in % bei Änderung der relativen				
	Quellmaß in %				hte um 1%	Holzfeuchte u	ım 1%		
				(Quellungskoeffizient)		(Differenzielle Quellung)			
	längs	radial	tangential	radial	tangential	radial	tangential		
Fichte	0,2-0,4	3,7	8,5	0,037	0,070	0,19	0,36		
Kiefer	0,2-0,4	4,2	8,3	0,035	0,068	0,19	0,36		
Lärche	0 1-0 3	3/	85	0 027	0.057	0 14	0.30		

abelle 8: Maximales Quellmaß und differentielle Quellun	g von	n Holzarten nacl	h [17]
---	-------	------------------	--------

Abbildung 34: Abmessungen der fehlerfreien Prüfkörper nach DIN 52184 [20], bzw. der Versuchskörper

Prüfungsablauf:

- a) Sämtliche Proben wurden nach der Klimatisierung im Trockenschrank darrgetrocknet. Dabei mussten sie, wie in der Norm beschrieben, zuerst bei 50 °C für 24 h, dann für weitere 24 h bei 80 °C und schließlich bei 103 °C bis zum darrtrockenen Zustand (Erreichen der Gewichtskonstanz) getrocknet werden.
- b) Bestimmung der Abmessungen der Pr
 üfkörper mit einer digitalen f
 ür die Bestimmung der maximalen linearen Quellma
 ße und der Darr-Rohdichte nach DIN 52 182 mittels Gleichung (17)

$$\rho_0 = \frac{m_0}{V_0} \tag{17}$$

Dabei ist

- po Darr-Rohdichte der absolut trockenen Probe [g/cm³]
- mo Masse der absolut trockenen Probe [g]
- V₀ Volumen der absolut trockenen Probe [cm³]
- c) Langsame Wiederbefeuchtung im Klimaraum für mindestens 5 Tage im Normalklima nach DIN 50 014 20/65 1.
- d) Wasserlagerung zum Erreichen des maximalen Quellungszustands. Die Dauer der Wasserlagerung von mind. zwei Wochen kann durch eine die Lagerung unter vermindertem Luftdruck bei folgender Vorgehensweise verkürzt werden:
 - Evakuieren im Exsikkator für eine Stunde (aufbringen eines konstanten Unterdrucks von 800 mbar).
 - Danach wurden die Probekörper bei Aufrechterhaltung des Unterdrucks geflutet und für ca. zwei weitere Stunden evakuiert, bis keine Luftbläschen mehr aus den Proben austraten.
 - Lagerung bei Aufrechterhaltung des Unterdrucks unter Wasser im Exsikkator f
 ür 36 Stunden.
 - Lagerung der Prüfkörper für mindestens eine Woche unter 20 °C warmen Wasser in einem Behälter im Normalklima.

Abbildung 35: Darrgetrocknete Probekörper (oben links); Exsikkator und Vakuumpumpe (oben rechts); Ermittlung der maximalen linearen Quellmaße mit Schublehre (unten)

6 Ergebnisse der labortechnischen Untersuchungen

6.1 Allgemeines

In den folgenden Abschnitten werden die Ergebnisse aus den labortechnischen Untersuchungen präsentiert. Es wird dabei jeweils zwischen den Kollektiven Nordtirol (NT) und Südtirol (ST), den Hangorientierungen – Nordhang (N), Südhang (S)- sowie den Höhenlagen unterschieden. Im Kapitel 9 sind die Ergebnisse für jede einzelne Höhenstufe detailliert angeführt, bzw. nachzulesen.

Annahmen zur statistischen Modellierung der Grundgesamtheit [2]

Um aus der praktischen Auswertung von empirisch gewonnen (diskreten) Versuchsdaten, die nur in einer meist sehr geringen Anzahl vorhanden sind, ist es nötig den Übergang zu einer kontinuierlichen Verteilungsfunktion durchzuführen. Die aus einer Stichprobe gewonnen Parameter stellen somit lediglich "Schätzwerte" aus einer Grundgesamtheit dar. Durch die Annahme der Grundverteilung (Normal-, Lognormal-, Weibull-Verteilungen, …) können die Parameter - Streuung (Spannweite, Varianz, Standardabweichung,…) und Form (Schiefe, Exzess) - der empirisch ermittelten Messdaten unterschiedlich gut angepasst werden (sogenannte "Best Fitting Modelle").

Zur Bestimmung der "richtigen" Annahme der Verteilung der Grundgesamtheit gibt es mehrere Möglichkeiten. Bei diesem Projekt wurde ein χ^2 -Test durchgeführt, und dieser mittels Wahrscheinlichkeitspapieren graphisch kontrolliert. Diese Vorgehensweise wurde für die Kollektive

- Nordtirol-Nordhang N (NT),
- Nordtirol-Südhang S (NT), sowie
- Südtirol- Nordhang N (ST) und
- Südtirol-Südhang S (ST) durchgeführt.

Am besten approximiert werden die Daten aus den Messungen zur Bestimmung der physikalischen und elasto-mechanischen Eigenschaften durch die Weibull- und die Normalverteilung. Eine Darstellung dieser Systematik wird für das Kollektiv Südtirol-Nordhang zur Anpassung der Biegefestigkeit in Abbildung 36 gezeigt. In den Berechnungen der statistischen Parameter entschied man sich – für die im Holzbau meist auch übliche – Annahme einer Normalverteilung der Grundgesamtheit. Bei der Jahrringanalyse wird eine Log-Normalverteilung zu Grunde gelegt.

Abbildung 36: Q-Q Plots (Wahrscheinlichkeitspapier) zur Überprüfung der statistischen Modellannahmen

6.2 Ergebnisse der visuellen Sortierung

Die Ausbeuten der Sortierklassen aus der visuellen Sortierung der Prüfkörper mit einer Länge von 2630 mm mit den Parametern aus dem mittleren Drittel zur Einhaltung der Kausalität der Messergebnisse und der Vergleichbarkeit mit den Ergebnissen der Biegeversuche ist der Abbildung 37 zu entnehmen. Die maßgebenden Sortierkriterien waren dabei vor allem die Parameter Astigkeit und Markröhre.

Dabei konnten rund 10 % in die Klasse S 13, 45 % S 10 und 37 % der Sortierklasse S 7 zugeordnet werden. Der Anteil nicht zuordenbarer Prüfkörper (Sortierklassen REJ) beträgt 8 % (37 St.). Eine erste Abhängigkeit der Sortierklassen von den Höhenstufen konnte keine festgestellt werden (Abbildung 38).

Die beiden Kollektive Nord- und Südtirol brachten annähernd die gleichen Ausbeuten in den einzelnen Sortierklassen, lediglich der Ausschuss REJ war beim Kollektiv Südtirol um 6 % höher als auf der Nordtiroler Seite (Tabelle 9).

Zwischen den Hangexpositionen Nord und Süd wurden bei der visuellen Sortierung deutliche Unterschiede erkennbar. Anhand der Ergebnisse aus der Tabelle 10 zeigt sich eine in der Sortierklasse S13 um 8 % höhere und der Klasse S10 sogar um 17 % höhere Ausbeute als am Südhang. Die Sortierklasse S 7 ist am Südhang um 14 % höher und auch beim Ausschuss REJ ist ein Unterschied von 11 % zu erkennen.

Abbildung 37: Ausbeuten der visuellen Sortierung gemäß ÖNORM DIN 4074-1

		Sortierklassen				
		S 13	S 10	S 7	REJ	Gesamt
		Anzahl	Anzahl	Anzahl	Anzahl	Anzahl
Standort	810m - S (ST)	0	4	8	4	16
	1030m - S (ST)	1	6	7	2	16
	1190m - S (ST)	0	6	6	4	16
	1390m - S (ST)	0	4	8	4	16
	1550m - S (ST)	2	7	6	1	16
	1880m - S (ST)	2	7	6	1	16
	2060m - S (ST)	2	5	6	3	16
	820m - N (ST)	2	9	3	2	16
	1010m - N (ST)	6	7	3	0	16
	1250m - N (ST)	1	3	10	2	16
	1380m - N (ST)	3	9	4	0	16
	1630m - N (ST)	1	13	2	0	16
	1850m - N (ST)	2	8	6	0	16
	Kollektiv Südtirol	22	88	75	23	208
		10,6%	42,3%	36,1%	11,1%	100,0%
	1160m - S (NT)	2	11	16	7	36
	1400m - S (NT)	4	14	12	4	34
	1600m - S (NT)	1	14	11	2	28
	1780m - S (NT)	0	8	20	0	28
	1060m - N (NT)	5	12	11	0	28
	1190m - N (NT)	6	11	7	0	24
	1380m - N (NT)	1	16	10	1	28
	1620m - N (NT)	4	24	8	0	36
	1700m - N (NT)	3	15	8	0	26
	Kallalitin Naadtiaal	26	125	103	14	268
	Kollektiv Nordtirol	9,7%	46,6%	38,4%	5,2%	100,0%
	Gesamt	48	213	178	37	476
		10,1%	44,7%	37,4%	7,8%	100,0%

Tabelle 9: Verteilung der Sortierklassen gemäß DIN 4074-1 getrennt nach den Kollektiven Nord- und Südtirol
			So	rtierklas	sen	
		S 13	S 10	S 7	REJ	Gesamt
		Anzahl	Anzahl	Anzahl	Anzahl	Anzahl
Standort	810m - S (ST)	0	4	8	4	16
	1030m - S (ST)	1	6	7	2	16
	1190m - S (ST)	0	6	6	4	16
	1390m - S (ST)	0	4	8	4	16
	1550m - S (ST)	2	7	6	1	16
	1880m - S (ST)	2	7	6	1	16
	2060m - S (ST)	2	5	6	3	16
	1160m - S (NT)	2	11	16	7	36
	1400m - S (NT)	4	14	12	4	34
	1600m - S (NT)	1	14	11	2	28
	1780m - S (NT)	0	8	20	0	28
	Kolloktiv Südbang	14	86	106	32	238
	Kollektiv Sudhang	5,9%	36,1%	44,5%	13,4%	100,0%
	820m - N (ST)	2	9	3	2	16
	1010m - N (ST)	6	7	3	0	16
	1250m - N (ST)	1	3	10	2	16
	1380m - N (ST)	3	9	4	0	16
	1630m - N (ST)	1	13	2	0	16
	1850m - N (ST)	2	8	6	0	16
	1060m - N (NT)	5	12	11	0	28
	1190m - N (NT)	6	11	7	0	24
	1380m - N (NT)	1	16	10	1	28
	1620m - N (NT)	4	24	8	0	36
	1700m - N (NT)	3	15	8	0	26
	Kollaktiv Nordhana	34	127	72	5	238
		14,3%	53,4%	30,3%	2,1%	100,0%
	Casamt	48	213	178	37	476
	Gesdill	10,1%	44,7%	37,4%	7,8%	100,0%

Tabelle 10: Verteilung der Sortierklassen gemäß DIN 4074-1, getrennt nach den Hangexpositionen Nord und Süd

6.3 Festigkeitsklassen nach Versuchsergebnissen gemäß EN 408 [12]

An dieser Stelle soll zur Evaluierung der Ergebnisse der visuellen Sortierung ein Vergleich mit den Ergebnissen aus den Biegeversuchen folgen. Durch die Ermittlung der Ausbeuten gemäß EN 14081-2 [21] auf Grundlage der ermittelten Parameter Rohdichte, Biegefestigkeit und Elastizitätsmodul nach EN 384 wird eine Einstufung in die Festigkeitsklassen nach EN 338 mit der Sortierkombination C30-C24-C18 (=S13-S10-S7) durchgeführt. Durch das Verfahren "Optimum-Grading" gemäß EN 14081-2 werden 84 % in die Festigkeitsklasse C30 und 15 % der Kanthölzer der Klasse C18 zugeordnet. Der Ausschuss REJ beträgt im Vergleich zur visuellen Sortierung nur mehr 1 % im Vergleich zu 8%.

Durch diese Sortierkombination werden keine Kanthölzer in die Festigkeitsklasse C24 sondern in die Festigkeitsklasse C30 eingeordnet. Die Begründung liegt in der häufig doch relativ ungünstigen Sortierkombination, und unter anderem in der konservativen – weil sichereren – Einstufung durch die visuellen Sortierverfahren.

Des Weiteren ist dieser Sachverhalt mit dem vorgegebenen Versuchsprozedere zu begründen. In Übereinstimmung mit den Angaben der Prüfnormen ist die Prüfkörperanordnung bei Biegeversuchen willkürlich in Bezug auf die Kantholzhöhe zu wählen⁴.

Wie auch bei den Ergebnissen der visuellen Sortierung ist auch aus den Ergebnissen der Biegeversuche bzw. den daraus abgeleiteten Festigkeitsklassen, kein Zusammenhang mit den Höhenstufen erkennbar. Das Kollektiv Nordtirol zeigt sich im Vergleich zur visuellen Sortierung mit einer um 10 % höheren Ausbeute in der Festigkeitsklasse C30 anhand der verwendeten Sortierkombination als etwas besser. Ein möglicher Einfluss der unterschiedlichen Hangorentierungen relativiert sich wiederum.

Abbildung 39: Ausbeuten Sortierkombination C30-C24-C18

Holzbaulehrstuhl, Universität Innsbruck

⁴ Siehe dazu auch ÖNORM EN 384:2010, 5.2, Absatz 2

•

Abbildung 40: Verteilung der Sortierklassen nach Versuchen gemäß EN 408 (Meereshöhen in ansteigender Reihenfolge)

Tabelle 11: Verteilung der Festigkeitsklassen nach	Versuchen gemäß EN	N 408, getrennt nach de	n Kollektiven
Nord-	und Südtirol		

		Sortierkombination: C30 - C24 - C18				
		C30	C18	REJ	Gesamt	
		Anzahl	Anzahl	Anzahl	Anzahl	
Standort	810m - S (ST)	7	9	0	16	
	1030m - S (ST)	16	0	0	16	
	1190m - S (ST)	11	5	0	16	
	1390m - S (ST)	8	8	0	16	
	1550m - S (ST)	15	1	0	16	
	1880m - S (ST)	15	1	0	16	
	2060m - S (ST)	11	4	1	16	
	820m - N (ST)	12	4	0	16	
	1010m - N (ST)	12	4	0	16	
	1250m - N (ST)	8	4	4	16	
	1380m - N (ST)	16	0	0	16	
	1630m - N (ST)	16	0	0	16	
	1850m - N (ST)	15	1	0	16	
	Kolloktiv Südtirol	162	41	5	208	
		77,9%	19,7%	2,4%	100,0%	
	1160m - S (NT)	32	4	0	36	
	1400m - S (NT)	34	0	0	34	
	1600m - S (NT)	28	0	0	28	
	1780m - S (NT)	26	1	1	28	
	1060m - N (NT)	21	7	0	28	
	1190m - N (NT)	23	1	0	24	
	1380m - N (NT)	27	1	0	28	
	1620m - N (NT)	30	6	0	36	
	1700m - N (NT)	15	11	0	26	
	Kollektiv Nordtirol	236	31	1	268	
		88,1%	11,6%	0,4%	100,0%	
	Gesamt	398	72	6	476	
	oesann	83,6%	15,1%	1,3%	100,0%	

<u> </u>	Sortierk	Sortierkombination: C30 - C24 - C18					
Standorte	C30	C18	REJ	Gesamt			
	Anzahl	Anzahl	Anzahl	Anzahl			
810m - S (ST)	7	9	0	16			
1030m - S (ST)	16	0	0	16			
1190m - S (ST)	11	5	0	16			
1390m - S (ST)	8	8	0	16			
1550m - S (ST)	15	1	0	16			
1880m - S (ST)	15	1	0	16			
2060m - S (ST)	11	4	1	16			
1160m - S (NT)	32	4	0	36			
1400m - S (NT)	34	0	0	34			
1600m - S (NT)	28	0	0	28			
1780m - S (NT)	Standorte Sortierkombination: C30 - C Kandorte C30 C18 REJ Anzahl Anzahl Anzahl Anzahl 810m - S (ST) 7 9 0 1030m - S (ST) 16 0 0 1190m - S (ST) 11 5 0 1390m - S (ST) 11 5 0 1390m - S (ST) 15 1 0 1880m - S (ST) 15 1 0 2060m - S (ST) 11 4 1 1160m - S (NT) 32 4 0 1400m - S (NT) 34 0 0 1400m - S (NT) 28 0 0 1780m - S (NT) 28 0 0 1780m - S (NT) 12 4 0 1250m - N (ST) 12 4 0 1250m - N (ST) 16 0 0 1380m - N (ST) 16 0 0 1850m - N (NT) 27 1 0 <th>28</th>	28					
Kollektiv Südhang	203	33	2	238			
	85,3%	13,9%	0,8%	100,0%			
820m - N (ST)	12	4	0	16			
1010m - N (ST)	12	4	0	16			
1250m - N (ST)	8	4	4	16			
1380m - N (ST)	16	0	0	16			
1630m - N (ST)	16	0	0	16			
1850m - N (ST)	15	1	0	16			
1060m - N (NT)	21	7	0	28			
1190m - N (NT)	23	1	0	24			
1380m - N (NT)	27	1	0	28			
1190m - N (NT) 1380m - N (NT) 1620m - N (NT) 1700m - N (NT) Kollektiv Nordhang	30	6	0	36			
	15	11	0	26			
Kollektiv Nordbang	195	39	4	238			
	81,9%	16,4%	1,7%	100,0%			
Gesamt	398	72	6	476			
Jesaint	83,6%	15,1%	1,3%	100,0%			

 Tabelle 12: Verteilung der Festigkeitsklassen nach Versuchen gemäß EN 408,

 getrennt nach den Hangexpositionen Nord und Süd

6.3.1 Verteilung der Sortier- bzw. Festigkeitsklassen bei Unterteilung in Höhen-Korridore

Abbildung 42: Verteilung der Festigkeitsklassen in Abhängigkeit von den Höhenstufen nach Versuchen gemäß EN 408

Zusammenfassung

In den oben dargestellten Abbildungen wurden die Standorte der Prüfkörperentnahmen in annähernd 3 gleich große Bereiche - vor allem auch hinsichtlich der Prüfkörperanzahlen unterteilt. Betrachtet man die Verteilung der Sortierklassen bzw. Festigkeitsklassen in Abhängigkeit von den Höhenstufen sind durch die visuellen Sortierungen sowie den Ergebnissen aus den Biegeversuchen keine Zusammenhänge bzw. Abhängigkeiten erkennbar.

6.4 Vorkommen von Haselfichten

Abbildung 43: Verteilung von Haselwuchsvorkommen über die Standorte

Zusammenfassung

Im Zuge der Ermittlung der mittleren Jahrringbreiten bei der visuellen Sortierung konnten insgesamt 41 (ca. 9 %) Kantholzquerschnitte mit Haselwuchs identifiziert werden. Die Verteilung über die Standorte ist der Abbildung 43 zu entnehmen. Dabei ist es zu einem vermehrten Auftreten bei den Standorten S (ST) gekommen.

6.5 Mittlere Jahrringbreiten J_{br}[mm]

Abbildung 44: Verteilung Jbr, , Gesamtübersicht

		Mittlere Jahrringbreiten nach ÖNORM DIN 4074-1 [mm]			
		Mittelwert	Maximum	Minimum	Standardabw eichung
Standort	810m - S (ST)	4,19	7,11	2,48	1,27
	1030m - S (ST)	1,46	2,23	,69	,47
	1190m - S (ST)	3,06	3,88	1,37	,70
	1390m - S (ST)	3,59	5,70	1,93	1,30
	1550m - S (ST)	2,66	3,71	1,97	,56
	1880m - S (ST)	1,49	2,26	1,10	,31
	2060m - S (ST)	1,61	2,23	1,17	,27
	Koll.: Südtirol-Südhang	2,58	7,11	,69	1,28
	820m - N (ST)	3,12	6,90	1,72	1,82
	1010m - N (ST)	2,15	4,31	1,03	,96
	1250m - N (ST)	3,99	6,00	1,88	1,27
	1380m - N (ST)	1,80	2,33	1,22	,34
	1630m - N (ST)	1,23	1,58	,78	,26
	1850m - N (ST)	1,41	1,73	,97	,23
	Koll.: Südtirol-Nordhang	2,28	6,90	,78	1,39
	1160m - S (NT)	2,80	4,89	1,35	,76
	1400m - S (NT)	1,44	2,58	,96	,37
	1600m - S (NT)	1,22	1,88	,84	,23
	1780m - S (NT)	1,18	1,78	,80	,26
	Koll.: Nordtirol-Südhang	1,72	4,89	,80	,84
	1060m - N (NT)	2,57	5,25	1,40	,94
	1190m - N (NT)	2,35	3,93	1,09	,73
	1380m - N (NT)	2,56	3,60	1,41	,58
	1620m - N (NT)	1,47	2,83	,77	,41
	1700m - N (NT)	1,65	2,32	,75	,40
	Koll.: Nordtirol-Nordhang	2,09	5,25	,75	,79
	Gesamt	2,14	7,11	,69	1,11

Tabelle 13: Statistische Kennwerte J_{br}

Abbildung 45: Histogramm J_{br}

Zusammenfassung

Der Mittelwert der mittleren Jahrringbreiten der visuellen Sortierung beträgt 2,14 mm. Der größte Wert mit 7,11 mm sowie auch der kleinste Wert mit 0,69 mm sind im Kollektiv Südtirol – Südhang aufgetreten.

Bei allen Kollektiven sind die maximalen mittleren Jahrringbreiten in den unteren Höhenstufen aufgetreten. Mit zunehmender Höhenlage des Wuchsortes ist eine Abnahme der Jahrringbreiten zu beobachten. Auch die Standardabweichung nimmt mit zunehmenden Höhenstufen ab, was somit eine Art Homogenisierung der Jahrringbreiten bedeutet. Zwischen den Hangorientierungen Nord/Süd sind keine Unterschiede ablesbar. Der Standort 1250-N(ST) hat im Vergleich zu den anderen benachbarten Standorten einen deutlich höheren Mittelwert der Jahrringbreiten. Eine Erklärung kann darin liegen, dass dieser Standort (Flurname "Rabwald" (siehe dazu auch Kapitel 9) im historischen Kataster als Fläche zur Beweidung durch Kühe und Streunutzung bis in die 70er eingetragen ist. Auch bei den elasto-mechanischen Messergebnissen werden an diesem Wuchsort immer wieder Unterschiede deutlich.

Die Jahrringbreiten werden häufig als indirekte Indikatoren für die Rohdichte und somit auch für die Festigkeiten verwendet. Bei genauerer Betrachtung ist festzustellen, dass die kleinen Mittelwerte der Jahrringbreiten mit den größten Mittelwerten der Rohdichten (Tabelle 19) zusammenfallen. Allerdings handelt es sich hier um einen Umstand der nicht immer zutreffen muss. Eine mit der Abnahme der Schwankungen der Jahrringbreiten in Abhängigkeit von den Höhenstufen wird bei den Ergebnissen der Rohdichtemessungen ebenfalls widergespiegelt.

6.5.1 Ergebnisse der Ermittlung der Astparameter

Insgesamt wurden an den 476 Prüfkörpern mit den Abmessungen 48 / 138 / 2630 mm 7722 Äste eingegeben. In den folgenden Diagrammen bzw. Tabellen werden die Ergebnisse der Untersuchungen der Astparameter *DEK* und *tKAR* präsentiert. Um die Kausalität der Messdaten zu gewährleisten, werden hier wiederum nur die Ast Daten über einen Bereich von ± 4 ·h von der Prüfkörpermitte ausgehend dargestellt. Ergebnisse zu den weiteren Ast-Daten gemäß den Beschreibungen in Kapitel 3.3.6 sind im Kapitel 11 nachzulesen.

6.5.1.1 Astparameter DEK

Abbildung 46: Verteilung DEK, Gesamtübersicht

		Durchmesser Einzelast Kantholz				
		Mittelwort	Maximum	Minimum	Standardabw	
Standort	810m - S (ST)	.18	.26	.08	.06	
	1030m - S (ST)	.18	.29	.10	.06	
	1190m - S (ST)	.21	.30	.10	.05	
	1390m - S (ST)	,19	,30	,09	,06	
	1550m - S (ST)	,17	,29	,07	,05	
	1880m - S (ST)	,19	,29	,13	,04	
	2060m - S (ST)	,20	,31	,11	,06	
	Koll.: Südtirol-Südhang	,19	,31	,07	,06	
	820m - N (ST)	,16	,25	,08	,05	
	1010m - N (ST)	,11	,22	,04	,05	
	1250m - N (ST)	,20	,28	,10	,06	
	1380m - N (ST)	,15	,23	,04	,05	
	1630m - N (ST)	,12	,19	,06	,04	
	1850m - N (ST)	,16	,25	,05	,05	
	Koll.: Südtirol-Nordhang	,15	,28	,04	,05	
	1160m - S (NT)	,19	,29	,09	,06	
	1400m - S (NT)	,19	,37	,08	,07	
	1600m - S (NT)	,17	,34	,07	,07	
	1780m - S (NT)	,18	,29	,09	,06	
	Koll.: Nordtirol-Südhang	,18	,37	,07	,07	
	1060m - N (NT)	,16	,26	,08	,05	
	1190m - N (NT)	,13	,31	,06	,06	
	1380m - N (NT)	,17	,29	,08	,06	
	1620m - N (NT)	,14	,26	,06	,05	
	1700m - N (NT)	,15	,26	,06	,06	
	Koll.: Nordtirol-Nordhang	,15	,31	,06	,05	
	Gesamt	,17	,37	,04	,06	

Tabelle 14: Statistische Kennwerte DEK

Abbildung 47: Histogramm DEK

6.5.1.2 Astparameter tKAR

Abbildung 48: Verteilung tKAR, Gesamtübersicht

		Total Knot Area				
		Mittelwert	Maximum	Minimum	Standardabw eichung	
Standort	810m - S (ST)	,26	,50	,19	,08	
	1030m - S (ST)	,23	,34	,14	,06	
	1190m - S (ST)	,27	,42	,16	,07	
	1390m - S (ST)	,34	,51	,20	,10	
	1550m - S (ST)	,20	,29	,13	,05	
	1880m - S (ST)	,25	,45	,16	,08	
	2060m - S (ST)	,26	,43	,12	,09	
	Koll.: Südtirol-Südhang	,26	,51	,12	,09	
	820m - N (ST)	,25	,36	,16	,07	
	1010m - N (ST)	,16	,39	,02	,09	
	1250m - N (ST)	,32	,50	,14	,10	
	1380m - N (ST)	,19	,30	,07	,06	
	1630m - N (ST)	,14	,20	,07	,04	
	1850m - N (ST)	,20	,32	,05	,07	
	Koll.: Südtirol-Nordhang	,21	,50	,02	,09	
	1160m - S (NT)	,29	,51	,11	,10	
	1400m - S (NT)	,24	,45	,07	,09	
	1600m - S (NT)	,23	,37	,07	,07	
	1780m - S (NT)	,26	,45	,09	,07	
	Koll.: Nordtirol-Südhang	,26	,51	,07	,09	
	1060m - N (NT)	,26	,43	,13	,09	
	1190m - N (NT)	,19	,38	,06	,08	
	1380m - N (NT)	,20	,36	,07	,06	
	1620m - N (NT)	,18	,25	,03	,05	
	1700m - N (NT)	,21	,38	,07	,07	
	Koll.: Nordtirol-Nordhang	,20	,43	,03	,08	
	Gesamt	,23	,51	,02	,09	

Tabelle 15: Statistische Kennwerte tKAR

Abbildung 49: Histogramm tKAR

Zusammenfassung:

Aus den Ergebnissen beider Astparameter lässt sich ablesen, dass die gewonnenen Prüfkörper an den Südhängen größere Astigkeiten bzw. Einzelastdurchmesser aufweisen als jene vom Nordhang. Auch der Einfluss des Standortes ist gut nachvollziehbar. So hat zum Beispiel der bis in die 50er Jahre des 20. Jahrhunderts bewirtschaftete Standort (Weideflächen) 1390 – S (ST) mit dem Flurnamen "Lana" den größten Wert tKAR mit 0,54 sowie auch den größten Mittelwert mit 0,34. Im Gegensatz dazu ist beim Standort 1010 – N (ST) mit dem Flurnamen "Schattenwald" der geringste Wert mit 0,02 und auch der kleinste Mittelwert von tKAR mit 0,16 vorzufinden.

Die Astansprachen nach den Tegernseer Gebräuchen lieferten aus den 7722 ausgezählten Ästen ca. ein Drittel (2354 St.) an lose verwachsenen Ästen. Ein Einfluss der Hanglagen bzw. Höhenstufen und der Bewirtschaftungsformen der Standorte ist nicht feststellbar.

6.6 Ergebnisse der Ultraschallmessungen

Bei den Ultraschallmessungen an den Prüfkörpern mit einer Länge von 2630 mm sind einige eindeutigen (Gerätebedingte) Messfehler aufgetreten, die nicht in den Auswertungen mitberücksichtigt werden, und somit von den insgesamt 476 Prüfkörpern 445 Messergebnisse zur Analyse dienen.

Abbildung 51: Histogramm Edyn, 12/20

			Dynamis	cher E-Modul	
		Mittelwert	Maximum	Minimum	Standardabw eichung
Standort	810m - S (ST)	12485	15188	9439	1764
	1030m - S (ST)	11616	16326	9543	1684
	1190m - S (ST)	12312	15861	10370	2336
	1390m - S (ST)	12738	15237	10994	1576
	1550m - S (ST)	12485	16901	10248	1790
	1880m - S (ST)	12219	13284	11141	905
	2060m - S (ST)	13671	15540	11830	1392
	Koll.: Südtirol-Südhang	12434	16901	9439	1747
	820m - N (ST)	13717	19743	8679	3176
	1010m - N (ST)	15554	17876	11655	2111
	1250m - N (ST)	12206	16518	9502	1881
	1380m - N (ST)	13184	15741	11039	1318
	1630m - N (ST)	13603	18950	10967	2006
	1850m - N (ST)	13812	17669	10173	2082
	Koll.: Südtirol-Nordhang	13679	19743	8679	2335
	1160m - S (NT)	13551	16749	10394	1634
	1400m - S (NT)	14337	19629	11302	2307
	1600m - S (NT)	15092	18611	12899	1523
	1780m - S (NT)	14396	18666	10784	2220
	Koll.: Nordtirol-Südhang	14293	19629	10394	2006
	1060m - N (NT)	14141	22407	9423	2785
	1190m - N (NT)	14414	18116	11594	1744
	1380m - N (NT)	13358	16109	10900	1393
	1620m - N (NT)	13381	17589	10075	1799
	1700m - N (NT)	12875	20689	9482	2331
	Koll.: Nordtirol-Nordhang	13608	22407	9423	2100
	Gesamt	13604	22407	8679	2153

Tabelle 16: Statistische Kennwerte Edyn

Zusammenfassung

Der Mittelwert des dynamischen Elastizitätsmoduls E_{dyn12/20} für das Gesamtkollektiv beträgt 13604 N/mm². Der Maximalwert von 22407 N/mm² ist als Ausreißer einzustufen, und deshalb nicht besonders aussagekräftig. Der kleinste Wert von 9262 N/mm² ist am Standort 820 – N (ST) aufgetreten. Die Standardabweichung beträgt für das gesamte Probenmaterial 2153 N/mm² (Variationskoeffizient 16 %).

6.7 Ergebnisse der Biegeprüfungen

6.7.1 Biegefestigkeit fm,150 [N/mm²] nach EN 384 [19]

Abbildung 53: Histogramm fm,150

			Biegefestigkeit [N/mm²]			
		Mittelwert	Maximum	Minimum	Standardabw eichung	
Standort	810m - S (ST)	32,48	47,90	18,10	8,72	
	1030m - S (ST)	45,74	64,20	33,20	9,58	
	1190m - S (ST)	34,60	55,50	21,00	9,70	
	1390m - S (ST)	28,76	45,40	18,20	7,78	
	1550m - S (ST)	41,54	53,20	26,70	8,37	
	1880m - S (ST)	38,28	53,20	24,00	7,34	
	2060m - S (ST)	35,03	57,80	13,50	12,55	
	Koll.: Südtirol-Südhang	36,63	64,20	13,50	10,48	
	820m - N (ST)	44,47	64,10	27,70	12,34	
	1010m - N (ST)	45,83	78,30	17,30	17,51	
	1250m - N (ST)	28,12	62,20	12,20	14,33	
	1380m - N (ST)	48,01	61,90	29,70	9,25	
	1630m - N (ST)	54,21	66,10	44,60	6,37	
	1850m - N (ST)	41,54	68,70	25,10	9,75	
	Koll.: Südtirol-Nordhang	43,69	78,30	12,20	14,28	
	1160m - S (NT)	41,49	62,10	23,60	10,39	
	1400m - S (NT)	52,96	78,10	35,00	11,56	
	1600m - S (NT)	52,73	66,40	41,10	6,80	
	1780m - S (NT)	42,67	60,30	12,80	10,54	
	Koll.: Nordtirol-Südhang	47,35	78,10	12,80	11,37	
	1060m - N (NT)	42,80	71,80	23,80	14,53	
	1190m - N (NT)	52,94	73,20	25,70	14,64	
	1380m - N (NT)	44,51	66,60	22,00	9,75	
	1620m - N (NT)	46,15	64,60	23,30	10,93	
	1700m - N (NT)	41,06	59,90	21,50	9,46	
	Koll.: Nordtirol-Nordhang	45,38	73,20	21,50	12,40	
	Gesamt	43,50	78,30	12,20	12,74	

Tabelle 17: Statistische Kennwerte fm,150, getrennt nach den Kollektiven Nord- und Südtirol

Zusammenfassung

Die Werte der Biegefestigkeiten f_{m,150} streuen bei einer Spannweite von 66,10 N/mm² zwischen den Größen von 12,20 N/mm² bis 78,30 N/mm². Im Mittel beträgt die Biegefestigkeit 43,50 N/mm² mit einem für das Fichtenholz üblichen Variationskoeffizienten von rund 29 %. In Bezug auf die Hangorientierungen und Höhenstufen können keine Unterschiede bei den Mittelwerten und Standardabweichungen festgestellt werden. Am Standort 1250 – N (ST) ist, bedingt durch die Wuchsbedingungen (siehe dazu auch Kapitel 9), im Vergleich zu den benachbarten Standorten ein mit 28,12 N/mm² deutlich kleinerer Mittelwert von f_{m,150} vorhanden.

6.7.2 Globaler Biege E-Modul Em,g, 12 [N/mm²] nach EN 384 [19]

Abbildung 54: Verteilung $E_{m,g,12}$, Gesamtübersicht

Abbildung 55:Histogramm $E_{m,g,12}$

			Globaler E-	-Modul [N/mn	1²]
		Mittelwert	Maximum	Minimum	Standardabw eichung
Standort	810m - S (ST)	9190	12570	5638	1868
	1030m - S (ST)	12769	14747	10472	1194
	1190m - S (ST)	9949	13160	7354	1521
	1390m - S (ST)	7821	11454	5628	1726
	1550m - S (ST)	9666	11954	7886	1131
	1880m - S (ST)	9956	11903	8742	864
	2060m - S (ST)	8807	11563	7243	1033
	Koll.: Südtirol-Südhang	9737	14747	5628	1958
	820m - N (ST)	11981	16963	6712	2918
	1010m - N (ST)	12880	17786	8911	2725
	1250m - N (ST)	9222	14690	4400	3154
	1380m - N (ST)	13185	16030	10820	1655
	1630m - N (ST)	13347	15872	11772	1366
	1850m - N (ST)	10375	14349	8665	1344
	Koll.: Südtirol-Nordhang	11832	17786	4400	2737
	1160m - S (NT)	12142	18032	8949	1995
	1400m - S (NT)	14160	17774	11765	1721
	1600m - S (NT)	13147	15774	10347	1510
	1780m - S (NT)	11050	13693	8511	1345
	Koll.: Nordtirol-Südhang	12667	18032	8511	2025
	1060m - N (NT)	12376	20041	6745	3475
	1190m - N (NT)	13690	17008	10620	2035
	1380m - N (NT)	11971	15335	10249	1363
	1620m - N (NT)	11451	15264	8204	1652
	1700m - N (NT)	9364	11836	7489	1176
	Koll.: Nordtirol-Nordhang	11732	20041	6745	2463
	Gesamt	11530	20041	4400	2531

Tabelle 18: Statistische Kennwerte Em,g,12

Zusammenfassung:

Für das Gesamtkollektiv beträgt der globale Biege-Elastizitätsmodul nach EN 384 [19] im Mittel 11530 N/mm², bei einer Standardabweichung von 2531 N/mm² (Variationskoeffizient 22 %). Die Werte streuen ähnlich wie jene der Ultraschallmessungen, und auch der kleinste Wert der Messergebnisse ist beim Standort 1250 – N (ST) aufgetreten. Das Kollektiv S-(ST) liegt mit einem mittleren E_{m,g,12} deutlich unter den Steifigkeitswerten der anderen Kollektive. Ein Zusammenhang mit den Höhenstufen der Wuchsorte ist ebenfalls nicht zu erkennen.

6.7.3 Norm - Rohdichten *ρ*₁₂ [kg/m³] nach EN 384 [19]

Abbildung 57: Histogramm p12

			Norm-Rohdichte [kg/m ³]			
					Standardabw	
Oto is allowed	040	Mittelwert	Maximum	Minimum	eichung	
Standort	810m - S (ST)	389	437	349	31	
	1030m - S (ST)	445	519	421	26	
	1190m - S (ST)	411	440	385	16	
	1390m - S (ST)	397	448	363	23	
	1550m - S (ST)	404	431	391	13	
	1880m - S (ST)	390	416	374	11	
	2060m - S (ST)	410	456	361	23	
	Koll.: Südtirol-Südhang	406	519	349	27	
	820m - N (ST)	417	480	348	45	
	1010m - N (ST)	423	489	343	45	
	1250m - N (ST)	401	455	356	30	
	1380m - N (ST)	441	475	392	28	
	1630m - N (ST)	427	477	386	25	
	1850m - N (ST)	403	418	389	11	
	Koll.: Südtirol-Nordhang	419	489	343	35	
	1160m - S (NT)	411	488	370	30	
	1400m - S (NT)	462	513	402	32	
	1600m - S (NT)	444	488	394	28	
	1780m - S (NT)	414	448	379	21	
	Koll.: Nordtirol-Südhang	433	513	370	35	
	1060m - N (NT)	407	540	352	47	
	1190m - N (NT)	427	473	390	25	
	1380m - N (NT)	412	464	377	24	
	1620m - N (NT)	405	444	360	22	
	1700m - N (NT)	375	395	353	14	
	Koll.: Nordtirol-Nordhang	405	540	352	32	
	Gesamt	415	540	343	35	

Tabelle 19: Norm-Rohdichte, Statistische Kennwerte

Zusammenfassung

Das Gesamtkollektiv weist umgerechnet auf eine Holzfeuchte von 12 % eine mittlere Norm-Rohdichte ρ_{12} von 415 kg/m³, mit einem Variationskoeffizienten von rund 8 % auf. Die Rohdichten zwischen den einzelnen Kollektiven schwanken nur gering. Die Abnahme der Jahrringbreiten mit zunehmenden Höhenstufen ist in einer Zunahme der Rohdichte nicht ablesbar. Genauere Hinweise dazu werden in Kapitel 6.9 gegeben.

Ergebnisse zu den Untersuchungen des Quell- und Schwindverhaltens der 6.8 Prüfkörper nach DIN 52184 [20]

6.8.1 Rohdichte *p*¹²

	Tabelle 20: Rohdichte	e Kleinproben, statistische Kenndaten					
			Norm-Rohdichte ρ12 [g/cm³]				
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.	
Standort	810m - S (ST)	16	0,387	0,442	0,338	0,036	
	1030m - S (ST)	16	0,450	0,523	0,410	0,032	
	1190m - S (ST)	16	0,406	0,456	0,368	0,028	
	1390m - S (ST)	16	0,395	0,457	0,352	0,033	
	1550m - S (ST)	16	0,405	0,432	0,378	0,017	
	1880m - S (ST)	16	0,392	0,419	0,371	0,013	
	2060m - S (ST)	16	0,402	0,453	0,358	0,023	
	Koll.: Südtirol-Südhang	112	0,405	0,523	0,338	0,033	
	820m - N (ST)	16	0,417	0,493	0,331	0,051	
	1010m - N (ST)	16	0,436	0,509	0,336	0,059	
	1250m - N (ST)	16	0,397	0,461	0,348	0,030	
	1380m - N (ST)	16	0,438	0,491	0,389	0,032	
	1630m - N (ST)	16	0,435	0,496	0,402	0,031	
	1850m - N (ST)	16	0,408	0,449	0,388	0,018	
	Koll.: Südtirol-Nordhang	96	0,422	0,509	0,331	0,041	
	1160m - S (NT)	36	0,413	0,501	0,362	0,035	
	1400m - S (NT)	34	0,464	0,532	0,409	0,035	
	1600m - S (NT)	28	0,442	0,498	0,372	0,036	
	1780m - S (NT)	28	0,409	0,454	0,372	0,024	
	Koll.: Nordtirol-Südhang	126	0,432	0,532	0,362	0,040	
	1060m - N (NT)	28	0,403	0,566	0,344	0,056	
	1190m - N (NT)	24	0,425	0,471	0,385	0,027	
	1380m - N (NT)	28	0,409	0,458	0,366	0,027	
	1620m - N (NT)	36	0,404	0,574	0,339	0,038	
	1700m - N (NT)	26	0,372	0,411	0,347	0,017	
	Koll.: Nordtirol-Nordhang	142	0,402	0,574	0,339	0,039	
	Gesamt	476	0,415	0,574	0,331	0,040	

Tabelle 20: Robdichte Kleinproben, statistische Kenndate

6.8.2 Darrdichte ρ_0

		Darr-Rohdichte ρ₀ [g/cm³]					
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.	
Standort	810m - S (ST)	16	0,370	0,426	0,321	0,037	
	1030m - S (ST)	16	0,431	0,508	0,391	0,033	
	1190m - S (ST)	16	0,386	0,433	0,349	0,028	
	1390m - S (ST)	16	0,373	0,436	0,332	0,032	
	1550m - S (ST)	16	0,384	0,413	0,355	0,017	
	1880m - S (ST)	16	0,374	0,399	0,353	0,013	
	2060m - S (ST)	16	0,382	0,430	0,338	0,023	
	Koll.: Südtirol-Südhang	112	0,386	0,508	0,321	0,033	
	820m - N (ST)	16	0,396	0,474	0,311	0,049	
	1010m - N (ST)	16	0,415	0,489	0,322	0,056	
	1250m - N (ST)	16	0,376	0,437	0,328	0,027	
	1380m - N (ST)	16	0,417	0,472	0,369	0,032	
	1630m - N (ST)	16	0,413	0,471	0,379	0,031	
	1850m - N (ST)	16	0,386	0,424	0,366	0,018	
	Koll.: Südtirol-Nordhang	96	0,401	0,489	0,311	0,040	
	1160m - S (NT)	36	0,396	0,490	0,350	0,034	
	1400m - S (NT)	34	0,444	0,510	0,390	0,035	
	1600m - S (NT)	28	0,420	0,480	0,350	0,036	
	1780m - S (NT)	28	0,388	0,430	0,350	0,023	
	Koll.: Nordtirol-Südhang	126	0,412	0,510	0,350	0,039	
	1060m - N (NT)	28	0,386	0,550	0,330	0,053	
	1190m - N (NT)	24	0,407	0,450	0,370	0,026	
	1380m - N (NT)	28	0,388	0,430	0,340	0,026	
	1620m - N (NT)	36	0,383	0,540	0,320	0,036	
	1700m - N (NT)	26	0,350	0,390	0,330	0,016	
	Koll.: Nordtirol-Nordhang	142	0,382	0,550	0,320	0,038	
	Gesamt	476	0,395	0,550	0,311	0,039	

Tabelle 21: Darrdichte Kleinproben, statistische Kenndaten

6.8.3 Maximales longitudinales Quellmaß $\beta_{\ell,max}$

Abbildung 58: Maximales longitudinales Quellmaß, Gesamtverteilung

		Maximales lineares Quellmaß in longitudinaler Richtung $\beta_{\ell, max}$ [%]				
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Standort	810m - S (ST)	16	0,34	0,44	0,20	0,06
	1030m - S (ST)	16	0,30	0,40	0,22	0,06
	1190m - S (ST)	16	0,34	0,64	0,26	0,09
	1390m - S (ST)	16	0,35	0,48	0,22	0,07
	1550m - S (ST)	16	0,30	0,51	0,24	0,07
	1880m - S (ST)	16	0,31	0,39	0,22	0,05
	2060m - S (ST)	16	0,31	0,37	0,24	0,03
	Koll.: Südtirol-Südhang	112	0,32	0,64	0,20	0,06
	820m - N (ST)	16	0,27	0,33	0,09	0,05
	1010m - N (ST)	16	0,24	0,36	0,14	0,06
	1250m - N (ST)	16	0,31	0,55	0,18	0,10
	1380m - N (ST)	16	0,25	0,39	0,17	0,06
	1630m - N (ST)	16	0,24	0,34	0,11	0,07
-	1850m - N (ST)	16	0,31	0,48	0,16	0,09
	Koll.: Südtirol-Nordhang	96	0,27	0,55	0,09	0,08
	1160m - S (NT)	36	0,35	0,52	0,26	0,05
	1400m - S (NT)	34	0,33	0,44	0,23	0,04
	1600m - S (NT)	28	0,35	0,55	0,25	0,06
	1780m - S (NT)	28	0,36	0,46	0,28	0,04
	Koll.: Nordtirol-Südhang	126	0,35	0,55	0,23	0,05
	1060m – N (NT)	28	0,37	0,49	0,28	0,05
	1190m – N (NT)	24	0,34	0,42	0,26	0,04
	1380m - N (NT)	28	0,33	0,49	0,26	0,06
	1620m - N (NT)	36	0,33	0,46	0,26	0,04
	1700m - N (NT)	26	0,35	0,47	0,19	0,06
	Koll.: Nordtirol-Nordhang	142	0,34	0,49	0,19	0,05
	Gesamt	476	0,32	0,64	0,09	0,07

Tabelle 22: Maximales longitudinales Quellmaß, statistische Kenndaten

6.8.4 Maximales radiales Quellmaß $\beta_{r,max}$

Abbildung 59: Maximales radiales Quellmaß, Gesamtverteilun	۱g
--	----

		Maximales lineares Quellmaß in radialer Richtung $\beta_{r,max}$ [%]				
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Standort	810m - S (ST)	16	4,34	6,97	3,21	0,94
	1030m - S (ST)	16	5,10	7,05	4,24	0,80
	1190m - S (ST)	16	3,90	5,51	2,44	0,79
	1390m - S (ST)	16	3,58	5,45	2,45	0,80
	1550m - S (ST)	16	3,88	5,11	2,68	0,69
	1880m - S (ST)	16	4,10	4,63	3,46	0,32
	2060m - S (ST)	16	3,83	4,87	2,40	0,64
	Koll.: Südtirol-Südhang	112	4,10	7,05	2,40	0,85
	820m - N (ST)	16	4,40	5,63	2,95	0,77
	1010m - N (ST)	16	4,54	6,54	3,06	1,09
	1250m - N (ST)	16	3,58	5,30	1,77	0,88
	1380m - N (ST)	16	4,79	6,34	3,21	0,81
	1630m - N (ST)	16	4,80	5,67	3,72	0,64
	1850m - N (ST)	16	3,70	4,60	2,65	0,56
	Koll.: Südtirol-Nordhang	96	4,30	6,54	1,77	0,93
	1160m - S (NT)	36	4,34	5,92	2,51	0,73
	1400m - S (NT)	34	5,05	6,80	3,83	0,64
	1600m - S (NT)	28	4,84	6,38	3,27	0,73
	1780m - S (NT)	28	4,31	5,57	2,60	0,67
	Koll.: Nordtirol-Südhang	126	4,64	6,80	2,51	0,76
	1060m – N (NT)	28	4,35	7,08	2,95	1,00
	1190m - N (NT)	24	4,76	6,00	3,51	0,65
	1380m - N (NT)	28	4,18	5,82	2,76	0,74
	1620m - N (NT)	36	4,16	5,41	2,91	0,58
	1700m - N (NT)	26	3,64	5,22	2,25	0,69
	Koll.: Nordtirol-Nordhang	142	4,20	7,08	2,25	0,81
	Gesamt	476	4.32	7.08	1.77	0.85

Tabelle 23: Maximales radiales Quellmaß, statistische Kenndaten

6.8.5 Maximales tangentiales Quellmaß $\beta_{t,max}$

Abbilduna 60:	Maximales	tangentiales	Quellmaß.	Verteilund	ı
J		J	· · · · ·		

		Maximales lineares Quellmaß in tangentialer Richtung βι,max [%]					
		Anzahl Mittelwert Maximum Minimum Std.abw.					
Standort	810m - S (ST)	16	10,07	12,09	7,90	1,10	
	1030m - S (ST)	16	10,08	11,63	8,03	0,90	
	1190m - S (ST)	16	8,98	11,16	6,26	1,33	
	1390m - S (ST)	16	8,38	9,99	6,98	0,88	
	1550m - S (ST)	16	8,93	10,43	7,21	1,06	
	1880m - S (ST)	16	8,99	10,10	7,92	0,63	
	2060m - S (ST)	16	8,73	10,23	7,01	0,90	
	Koll.: Südtirol-Südhang	112	9,16	12,09	6,26	1,14	
	820m - N (ST)	16	9,55	12,38	7,02	1,34	
	1010m - N (ST)	16	9,28	11,59	6,11	1,51	
	1250m - N (ST)	16	9,33	11,38	7,47	1,26	
	1380m - N (ST)	16	9,40	11,45	6,63	1,35	
	1630m - N (ST)	16	9,17	10,12	8,12	0,54	
	1850m - N (ST)	16	8,65	10,27	6,97	1,01	
	Koll.: Südtirol-Nordhang	96	9,23	12,38	6,11	1,21	
	1160m - S (NT)	36	9,66	12,33	6,23	1,18	
	1400m - S (NT)	34	10,29	12,35	8,99	0,96	
	1600m - S (NT)	28	9,27	10,80	7,75	0,88	
	1780m - S (NT)	28	8,97	10,99	6,98	0,86	
	Koll.: Nordtirol-Südhang	126	9,59	12,35	6,23	1,09	
	1060m – N (NT)	28	9,40	11,93	7,56	1,06	
	1190m – N (NT)	24	9,84	11,26	7,81	0,87	
	1380m – N (NT)	28	9,11	10,59	7,04	1,00	
	1620m - N (NT)	36	9,14	10,71	7,20	0,82	
	1700m - N (NT)	26	8,44	10,16	6,23	0,89	
	Koll.: Nordtirol-Nordhang	142	9,17	11,93	6,23	1,01	
	Gesamt	476	9,29	12,38	6,11	1,12	

Tabelle 24: Maximales tangentiales Quellmaß Kleinproben, statistische Kenndaten

6.8.6 Korrelationen zwischen physikalischen Parametern und den Schwindmaßen

Abbildung 61: Korrelation Normrohdichte radiales/tangentiales Quellmaß

Abbildung 62: Korrelation Mittlere Jahrringbreite radiales/tangentiales Quellmaß

Abbildung 63: Korrelation Spätholzanteil radiales/tangentiales Quellmaß

Zusammenfassung

Der Mittelwert der Rohdichte der Kleinproben bei der Versuchsdurchführung zur Ermittlung der Quellmaße stimmt mit den Ergebnissen der Rohdichte p12 gemäß EN 384 [19] mit 415 kg/m³ exakt überein. Die ermittelten Quellmaße in den 3 Hauptrichtungen des Holzes zeigen keine Abhängigkeiten von den Höhenstufen der Standorte und auch keine Abhängigkeiten von den Hangorientierungen.

Der Mittelwert des longitudinalen Quellmaßes beträgt 0,32 % mit einem Maximum von 0,64% und einem Minimum von 0,09 % bei einem Variationskoeffizient von rd. 22 %.

Der Mittelwert des radialen Quellmaßes beträgt 4,32 % mit einem Maximum von 7,08 % und einem Minimum von 1,77 % bei einem Variationskoeffizient von rd. 20 %.

Der Mittelwert des tangentialen Quellmaßes beträgt 9,29 % mit einem Maximum von 12,38 % und einem Minimum von 6,11 % bei einem Variationskoeffizient von rd. 12 %.

Die lineare Regressionsanalyse zeigt nur geringe Korrelationen mit den Parametern der Norm-Rohdichte und der mittleren Jahrringbreite bzw. dem Spätholzanteil. Beim Vergleich mit den Jahrringen bzw. Spätholzanteilen soll allerdings nicht unerwähnt bleiben, dass es sich hier um die Daten die über den gesamten Querschnitt handelt, und somit nicht ohne Vorbehalt interpretiert werden sollen.

6.9 Spätholzanalyse

6.9.1 Jahrringbreiten

Kollektiv: Südtirol – Südhang

Abbildung 65: Verteilung Jahrringbreiten, Südtirol - Nordhang

Kollektiv: Nordtirol – Südhang

Abbildung 66: Verteilung Jahrringbreiten, Nordtirol - Südhang

Abbildung 67: Verteilung Jahrringbreiten, Nordtirol - Nordhang

In der Abbildung 68 und Abbildung 69 wird gezeigt, wie unterschiedlich die Jahrringbreiten bei den untersuchten Prüfkörpern auch in annähernd gleichen Höhenstufen sein können.

Abbildung 69: Prüfkörper ID 296; mittlere Jahrringbreite 1,04 mm, 1010m - N (ST)

		Jahrringbreiten [mm]			
		Mittelwert	Maximum	Minimum	StdAbw.
Standort	810m - S (ST)	4,32	7,35	2,84	1,29
	1030m - S (ST)	1,70	2,89	0,93	0,62
	1190m - S (ST)	3,19	4,33	1,66	0,73
	1390m - S (ST)	3,65	6,03	1,66	1,49
	1550m - S (ST)	2,53	3,27	1,85	0,47
	1880m - S (ST)	1,59	2,63	1,00	0,45
	2060m - S (ST)	1,74	2,13	1,24	0,25
	Koll.: Südtirol-Südhang	2,67	7,35	0,93	1,31
	820m - N (ST)	3,22	6,61	1,82	1,76
	1010m - N (ST)	2,21	4,37	1,04	0,98
	1250m - N (ST)	4,05	6,14	1,39	1,49
	1380m - N (ST)	1,83	2,62	1,11	0,41
	1630m - N (ST)	1,28	1,62	0,83	0,23
	1850m - N (ST)	1,40	1,75	1,07	0,22
	Koll.: Südtirol-Nordhang	2,33	6,61	0,83	1,43
	1160m - S (NT)	2,92	5,19	1,33	0,84
	1400m - S (NT)	1,41	2,30	0,91	0,35
	1600m - S (NT)	1,30	1,76	0,85	0,23
	1780m - S (NT)	1,32	2,20	0,83	0,30
	Koll.: Nordtirol-Südhang	1,80	5,19	0,83	0,88
	1060m - N (NT)	2,77	4,90	1,44	1,03
	1190m - N (NT)	2,38	3,85	1,34	0,75
	1380m - N (NT)	2,56	3,39	1,51	0,51
	1620m - N (NT)	1,47	2,72	0,76	0,40
	1700m - N (NT)	1,72	2,32	1,14	0,38
	Koll.: Nordtirol-Nordhang	2,14	4,90	0,76	0,82
	Gesamt	2,21	7,35	0,76	1,15

Tabelle 25: Mittlere Jahrringbreiten aus der Jahrringanalyse mittels LignoVision®

Abbildung 70: Zusammenhang J_{br} mit den Jahrringbreiten aus der Jahrringanalyse

Zur Kontrolle der Konsistenz der Messdaten zeigt Abbildung 70 die gute Korrelation von R = 0,97 der beiden durchgeführten Messungen zur Bestimmung der Jahrringbreiten. Aus den hier ermittelten Ergebnissen ist derselbe Zusammenhang wie schon in Kapitel 6.5 beschrieben, abzulesen.

6.9.2 Spätholzanteil

Aus den Messergebnissen kann mit Hilfe einer Spearman'schen Rangkorrelation eine Beziehung zwischen der Höhenstufe des Wuchsortes und dem Spätholzanteil mit R_s = 0,33 angegeben werden. In Abbildung 71 ist dieser Sachverhalt zeichnerisch mit Hilfe einer linearen Korrelationsanalyse dargestellt. Daraus lassen sich ähnliche Werte wie bei der Spearman'schen Rangkorrelation in der Größenordnung von R = 0,31 ablesen. Auch wenn hier nur mäßige Korrelationen abgelesen werden können, kann abgeleitet werden, dass mit zunehmender Höhenstufe der Spätholzanteil leicht zunimmt. Dieser Zusammenhang bzw. diese Tendenz lässt sich mit den ungünstiger werdenden klimatischen Wuchsbedingungen erklären. Durch die kürzeren Wuchsperioden stehen dem Baum kürzere Perioden zur Ausbildung von Frühholzbereichen zur Verfügung. Dadurch verringern sich auch die Jahrringbreiten weshalb sie im Vergleich zu anderen Baumbeständen mit günstigeren Wuchsbedingungen ein wesentlich geringeres Dickenwachstum besitzen.

Ergebnisse der Jahrringanalyse im Detail:

		Norm- Rohdichte [kg/m³]	Jahrringbreite n [mm]	Frühholzanteil [-]	Spätholzanteil [-]	Höhenstufe [m.ü.NN]
Norm-Rohdichte [kg/m ³]	Korrelation nach Pearson	1	-,417**	-,603**	,602**	-,044
	Signifikanz (2-seitig)		,000	,000	,000	,339
	Ν	476	476	476	476	476
Jahrringbreiten [mm]	Korrelation nach Pearson	-,417	1	,771	-,771	-,518
	Signifikanz (2-seitig)	,000		,000	,000	,000
	Ν	476	476	476	476	476
Frühholzanteil [-]	Korrelation nach Pearson	-,603**	,771**	1	-,999**	-,316 ^{**}
	Signifikanz (2-seitig)	,000	,000		,000	,000
	Ν	476	476	476	476	476
Spätholzanteil [-]	Korrelation nach Pearson	,602**	-,771**	-,999**	1	,314"
	Signifikanz (2-seitig)	,000	,000	,000		,000
	Ν	476	476	476	476	476
Höhenstufe [m.ü.NN]	Korrelation nach Pearson	-,044	-,518**	-,316**	,314**	1
	Signifikanz (2-seitig)	,339	,000	,000	,000	
	Ν	476	476	476	476	476

Tabelle 26 Korrelationen nach Pearson, Jahrringanalyse Korrelationen

**. Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

			nononanonon				
			Norm- Rohdichte [kg/m³]	Jahrringbreite n [mm]	Frühholzanteil	Spätholzanteil [-]	Höhenstufe [m.ü.NN]
Spearman-Rho	Norm-Rohdichte [kg/m ³]	Korrelationskoeffizient	1,000	-,376 [™]	-,563 ^{**}	,563 [⊷]	-,051
		Sig. (2-seitig)	•	,000	,000	,000	,264
		Ν	476	476	476	476	476
	Jahrringbreiten [mm]	Korrelationskoeffizient	-,376**	1,000	,820 ^{**}	-,820**	-,551
		Sig. (2-seitig)	,000		,000	,000	,000
		Ν	476	476	476	476	476
	Frühholzanteil [-]	Korrelationskoeffizient	-,563**	,820 [™]	1,000	-1,000**	-,334
		Sig. (2-seitig)	,000	,000		,000	,000
		Ν	476	476	476	476	476
	Spätholzanteil [-]	Korrelationskoeffizient	,563	-,820 ^{**}	-1,000**	1,000	,333"
		Sig. (2-seitig)	,000	,000	,000		,000
		Ν	476	476	476	476	476
	Höhenstufe [m.ü.NN]	Korrelationskoeffizient	-,051	-,551 ^{**}	-,334	,333**	1,000
		Sig. (2-seitig)	,264	,000	,000	,000	
		N	476	476	476	476	476

Tabelle 27: Spearman'sche Rangkorrelation,	Jahrringanalyse
Korrelationen	

**. Die Korrelation ist auf dem 0,01 Niveau signifikant (zweiseitig).

Die negative Korrelation zwischen Frühholz und der Rohdichte zeigt an, dass bei zunehmender Frühholzbreite die Rohdichte abnimmt. Weiters kann man erkennen, dass im Vergleich zu den gezeigten Messergebnissen von R. Wimmer [8] zwischen der Frühholzbreite eine wesentlich geringere und zwischen der Spätholzbreite und der Rohdichte eine höhere Korrelation beobachtet werden kann.

Gemäß der Abbildung 74 bzw. der Tabelle 26 und Tabelle 27 zeigt sich eine nur geringe Korrelation zwischen der Rohdichte und den Höhenstufen von Rs = - 0,051 bzw. R = - 0,044. Es besteht ein sehr straffer Zusammenhang zwischen den Jahrringbreiten und den Frühholzbreiten, eine Veränderung der Jahrringbreite bewirkt also in erster Linie eine Veränderung der Frühholzbreite. Das Spätholz korreliert weniger gut mit den Jahrringbreiten.

Abbildung 71: Zusammenhang zwischen Frühholz und Spätholzanteilen mit den Höhenstufen

Abbildung 72: Zusammenhang Jahrringbreiten und Frühholzbreiten

Abbildung 74: Zusammenhang Jahrringbreiten und Norm – Rohdichten

Abbildung 75: Zusammenhang Jahrringbreiten und Spätholzanteil

7 Maschinelle Sortierparameter

Durch die Sortieranlage Golden-Eye-706 wurden für das zu untersuchende Holz mehrere Sortierparameter untersucht. Mit Hilfe von Röntgenbildern werden die Astigkeiten für jeden einzelnen Prüfkörper bestimmt. Der Astparameter Kn001 beschreibt die größte Astigkeit (Astansammlung an einer Stelle x), der Parameter KnAll dokumentiert die Gesamtastigkeit eines jeden Prüfkörpers. Neben der Bestimmung der Astigkeiten wird mit dem Röntgenverfahren auch die Rohdichte bestimmt und mit Hilfe von Feuchtemessungen auf eine Holzfeuchte von 12 % zur Bestimmung des Sortierparameter IP_DEN umgerechnet. Der dynamische Elastizitätsmodul MOEdyn wird mit dem ViSCAN des GoldenEye-706 bestimmt, woraus in einem weiteren Schritt der maschinell ermittelte Sortierparameter IP_MOE errechnet wird.

Die beschriebenen Parameter Astigkeit, Rohdichte und dynamischer E-Modul dienen in einem letzten Schritt zur Bestimmung der Festigkeit IP_MOR.

7.1 Maschinell ermittelter Astparameter Kn001

Der maschinell ermittelte Parameter Kn001 ist ein Wert für die größte Astigkeit. Es handelt sich hier wie bei allen Astparametern um einen dimensionslosen Wert der relativ gute Korrelationen mit DEK aufweist.

Abbildung 77: Histogramm Kn001
				Kn001 [-]		
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Standort	810m - S (ST)	16	2762	4210	1888	671
	1030m - S (ST)	16	2237	3181	1172	551
	1190m - S (ST)	16	3037	4433	1502	758
	1390m - S (ST)	16	3529	5080	1796	837
	1550m - S (ST)	16	2034	2860	1223	481
	1880m - S (ST)	16	2607	4129	1531	868
	2060m - S (ST)	16	3038	5636	962	1152
	Koll.: Südtirol-Südhang	112	2749	5636	962	901
	820m - N (ST)	16	2402	4286	741	953
	1010m - N (ST)	16	1635	3289	229	797
	1250m - N (ST)	16	3648	5674	931	1254
	1380m - N (ST)	16	1778	2611	673	564
	1630m - N (ST)	16	1517	2589	552	669
	1850m - N (ST)	16	1894	3797	983	707
	Koll.: Südtirol-Nordhang	96	2146	5674	229	1108
	1160m - S (NT)	36	2761	5142	797	963
	1400m - S (NT)	34	1908	3540	723	794
	1600m - S (NT)	28	2035	3013	725	453
	1780m - S (NT)	28	2711	4253	1623	695
	Koll.: Nordtirol-Südhang	126	2358	5142	723	853
	1060m - N (NT)	28	2518	4607	623	925
	1190m - N (NT)	24	1984	3317	678	846
	1380m - N (NT)	28	2177	4280	561	781
	1620m - N (NT)	36	1882	3305	616	609
	1700m - N (NT)	26	2373	4961	620	900
	Koll.: Nordtirol-Nordhang	142	2173	4961	561	832
	Gesamt	476	2352	5674	229	942

Tabelle 28: Statistische Kennwerte Kn001

Zusammenfassung

Der Sortierparameter Kn001 erstreckt sich über eine Bandbreite von 5445, bei einem größtem Wert von 5674 beim Standort 1250 – N (ST) und einem kleinsten Wert von 229. Die Werte von Kn001 haben einen Mittelwert von 2352 bei einem Variationskoeffizienten von 40 %.

Bei einer nicht Berücksichtigung des Standortes 1250 – N (ST) haben die Prüfkörper von Nordhängen weniger große lokale Astansammlungen bei einem Mittelwert von 2162 und einem Maxima von 2055. Im Vergleich dazu die Südseiten mit einem Mittelwert für Kn001 von 2542 und 5636 als Maximalwert. Die Werte streuen allerdings mit 40 % um 5 % mehr als jene auf der Südseite.

In Abhängigkeit zu den Höhenstufen können keine signifikanten Zusammenhänge erkannt werden.

7.2 Maschinell ermittelter Astparameter KnAll

Abbildung 78: Verteilung KnAll, Gesamtübersicht

Abbildung 79: Histogramm , KnAll

				KnAll [-]		
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Standort	810m - S (ST)	16	4708	7475	2592	1433
	1030m - S (ST)	16	3490	5058	1754	934
	1190m - S (ST)	16	4873	8339	1994	1459
	1390m - S (ST)	16	6729	11286	3258	2219
	1550m - S (ST)	16	4070	6750	2311	1172
	1880m - S (ST)	16	5211	9402	2468	2137
	2060m - S (ST)	16	5135	7552	1025	1817
	Koll.: Südtirol-Südhang	112	4888	11286	1025	1869
	820m - N (ST)	16	3224	6816	795	1713
	1010m - N (ST)	16	2261	4571	173	1372
	1250m - N (ST)	16	5554	9470	1675	2232
	1380m - N (ST)	16	2998	6373	835	1443
	1630m - N (ST)	16	2622	4729	740	1168
	1850m - N (ST)	16	4381	7328	1314	1548
	Koll.: Südtirol-Nordhang	96	3507	9470	173	1938
	1160m - S (NT)	36	4260	7769	1140	1659
	1400m - S (NT)	34	3071	5605	1054	1268
	1600m - S (NT)	28	4405	6575	624	1474
	1780m - S (NT)	28	5364	9187	2403	1527
	Koll.: Nordtirol-Südhang	126	4217	9187	624	1682
	1060m - N (NT)	28	3694	7489	798	1707
	1190m - N (NT)	24	2966	5131	863	1371
	1380m - N (NT)	28	3307	6206	870	1369
	1620m - N (NT)	36	3355	6317	622	1373
	1700m - N (NT)	26	4663	7998	1060	1796
	Koll.: Nordtirol-Nordhang	142	3586	7998	622	1605
	Gesamt	476	4043	11286	173	1836

Tabelle 29: Statistische Kennwerte KnAll

Zusammenfassung KnAll

Der Sortierparameter KnAll "Gesamtastigkeit" streut mit einer Standardabweichung von 1836 sehr stark um den Mittelwert von 4043. Der größte Wert (11286) tritt beim Standort 1390 – S (ST) und der kleinste Wert (173) für KnAll beim Standort 1010 – N (ST) auf. Der zweit größte Wert tritt mit 9470 wiederum der schon erwähnte Standort 1250 – N (ST) in Erscheinung.

Als Erklärung dazu die folgenden Standortbeschreibungen:

1390 – S (ST): Flurname: "Lana"; Gelände: mäßig steil; Wasserhaushalt trocken; Besonderheiten: Dieses Gebiet wurde seit jeher geweidet, bis in ca. die 50er Jahre wo eine Aufforstung stattfand. Auch Streunutzung wurde hier praktiziert.

1250 – N (ST): Flurname: "Rabwald"; Gelände: mäßig steil; Wasserhaushalt: frisch Besonderheiten: Beweidung durch Kühe und Streunutzung bis in die 70er Jahre 1010 – N (ST): Flurname "Schattenwald": Gelände: steil; Wasserhaushalt: frisch; Besonderheiten: Große Steinblöcke mit auffallend viel Lärchenanteil.

Mit Tabelle 30 soll der Zusammenhang der Standorteigenschaften mit den Astigkeitsparametern und den Auswirkungen auf die Festigkeitseigenschaften nochmals dargestellt werden.

		KnAll [-]	Kn001 [-]	IP_MOE [N/mm²]	IP_MOR [N/mm²]
		Mittelwert	Mittelwert	Mittelwert	Mittelwert
Standort	1390m - S (ST)	6729	3529	8153,12	23,78
	1250m - N (ST)	5554	3648	9192,00	27,05
	1010m - N (ST)	2261	1635	12497,75	42,08

Tabelle 30: Einfluss des Standortes auf Ast- und Festigkeitsparameter

Zwischen der Höhenstufe und der Gesamtastigkeit ergibt sich eine Korrelation von R = 0,18 und somit kein Zusammenhang.

7.3 Maschineller Sortierparameter Festigkeit IP_MOR

Abbildung 80: Verteilung IP_MOR, Gesamtübersicht

		Maschin	en Paramete	r Biegefestig	gkeit IP_MO	R [N/mm²]
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Standort	810m - S (ST)	16	30,48	41,00	17,60	6,84
	1030m - S (ST)	16	41,73	50,90	36,50	4,42
	1190m - S (ST)	16	30,41	42,60	19,10	6,51
	1390m - S (ST)	16	23,79	36,20	18,20	5,31
	1550m - S (ST)	16	33,66	43,30	26,50	4,42
	1880m - S (ST)	16	31,87	43,70	21,60	5,08
	2060m - S (ST)	16	27,16	42,70	20,80	5,29
	Koll.: Südtirol-Südhang	112	31,30	50,90	17,60	7,47
	820m - N (ST)	16	39,56	57,30	24,40	10,31
	1010m - N (ST)	16	42,48	59,40	24,50	9,19
	1250m - N (ST)	16	28,14	46,60	10,60	10,66
	1380m - N (ST)	16	44,13	52,30	36,60	5,28
	1630m - N (ST)	16	44,63	55,30	40,10	4,63
	1850m - N (ST)	16	34,96	40,20	29,70	2,48
	Koll.: Südtirol-Nordhang	96	38,98	59,40	10,60	9,55
	1160m - S (NT)	36	37,32	57,40	25,60	7,04
	1400m - S (NT)	34	45,16	61,10	35,00	6,96
	1600m - S (NT)	28	41,76	51,90	30,00	5,66
	1780m - S (NT)	28	32,37	40,50	21,60	5,31
	Koll.: Nordtirol-Südhang	126	39,32	61,10	21,60	7,89
	1060m – N (NT)	28	38,93	66,30	23,90	10,61
	1190m – N (NT)	24	43,74	53,60	31,80	6,40
	1380m - N (NT)	28	37,95	48,60	26,80	5,25
	1620m - N (NT)	36	38,23	56,10	25,00	6,21
	1700m - N (NT)	26	30,13	41,60	20,80	5,28
	Koll.: Nordtirol-Nordhang	142	37,76	66,30	20,80	8,07
	Gesamt	476	36,90	66,30	10,60	8,78

Tabelle 31: Statistische Kennwerte IP_MOR

Abbildung 81: Histogramm IP_MOR

Abbildung 82: Zusammenhang IP_MOR und Biegefestigkeit nach EN 384

7.4 Maschineller Sortierparameter E-Modul IP_MOE

Der maschinell ermittelte Parameter IP_MOE ist der durch den ViSCAN ermittelte Wert der Steifigkeit der Prüfköper.

Abbildung 83: Verteilung IP_MOE, Gesamtübersicht

		Masch	inen Param	eter E-Mod	ul IP_MOE	[N/mm²]
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Standort	810m - S (ST)	16	9631	12617	7028	1842
	1030m - S (ST)	16	12823	14331	10872	954
	1190m - S (ST)	16	9801	12940	7818	1411
	1390m - S (ST)	16	8153	11791	6736	1684
	1550m - S (ST)	16	10241	12700	9082	1130
	1880m - S (ST)	16	9813	11471	8750	815
	2060m - S (ST)	16	9108	11094	7926	822
	Koll.: Südtirol-Südhang	112	9939	14331	6736	1838
	820m - N (ST)	16	12088	17097	7589	2783
	1010m - N (ST	16	12498	16500	8885	2295
	1250m - N (ST)	16	9192	13864	5876	2535
	1380m - N (ST)	16	12919	15371	11026	1510
	1630m - N (ST)	16	12906	15741	11479	1341
_	1850m - N (ST)	16	9968	11421	9067	737
	Koll.: Südtirol-Nordhang	96	11595	17097	5876	2445
	1160m - S (NT)	36	11664	17652	9061	1913
	1400m - S (NT)	34	13928	17783	11260	1790
	1600m - S (NT)	28	12671	15195	9429	1547
	1780m - S (NT)	28	10336	12214	7882	1220
<u>-</u>	Koll.: Nordtirol-Südhang	126	12203	17783	7882	2105
	1060m - N (NT)	28	11778	20260	7497	3296
	1190m - N (NT)	24	12991	16503	10248	1841
	1380m - N (NT)	28	11387	14631	9457	1333
	1620m - N (NT)	36	11174	15645	8093	1741
_	1700m - N (NT)	26	8943	11010	7128	986
	Koll.: Nordtirol-Nordhang	142	11234	20260	7128	2336
-	Gesamt	476	11259	20260	5876	2333

Tabelle 32: Statistische Kennwerte IP_MOE

Abbildung 85: Zusammenhang IP_MOE und Globaler E-Modul nach EN 384

7.5 Maschineller Sortierparameter Rohdichte IP_DEN

Der maschinell ermittelte Wert IP_DEN ist der Wert für die Rohdichte in [kg/m³].

Abbildung 86: Verteilung IP_DEN, Gesamtübersicht

		Masch	inen Paramo	eter Rohdic	hte IP_DEN	[kg/m³]
		Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Standort	810m - S (ST)	16	378	430	342	32
	1030m - S (ST)	16	442	515	415	28
	1190m - S (ST)	16	400	429	375	16
	1390m - S (ST)	16	391	438	363	22
	1550m - S (ST)	16	400	436	384	13
	1880m - S (ST)	16	386	402	369	10
	2060m - S (ST)	16	406	452	363	23
	Koll.: Südtirol-Südhang	112	400	515	342	29
	820m - N (ST)	16	410	478	342	43
	1010m - N (ST)	16	416	492	340	47
	1250m - N (ST)	16	396	449	351	28
	1380m - N (ST)	16	432	469	385	29
	1630m - N (ST)	16	422	463	388	23
	1850m - N (ST)	16	398	410	387	8
	Koll.: Südtirol-Nordhang	96	412	492	340	34
	1160m - S (NT)	36	407	488	369	28
	1400m - S (NT)	34	456	509	402	31
	1600m - S (NT)	28	441	480	393	28
	1780m - S (NT)	28	410	447	377	21
	Koll.: Nordtirol-Südhang	126	429	509	369	35
	1060m - N (NT)	28	398	533	348	46
	1190m - N (NT)	24	421	463	383	25
	1380m - N (NT)	28	401	445	369	20
	1620m - N (NT)	36	402	474	352	25
	1700m - N (NT)	26	370	392	345	14
	Koll.: Nordtirol-Nordhang	142	398	533	345	32
	Gesamt	476	410	533	340	35

Tabelle 33: Statistische Kennwerte IP DEN

Abbildung 88: Zusammenhang IP_DEN und Norm-Rohdichte nach EN 384 [19]

8 Analyse der Ergebnisse, Diskussionspunkte

Um das untersuchte Gebirgsholz mit Tieflagenholz vergleichen zu können, wird auf die Ergebnisse anderer Forschungsvorhaben zurückgegriffen.

Holzknecht, S.;

Diplomarbeit an der Universität Innsbruck zur Maschinellen Sortierung von Gebirgsholz Untersuchungen zu Brettern aus Fichtenholz davon jeweils 100 St. aus dem Iseltal in Osttirol (Österreich) und 100 St. aus dem Sauerland (Deutschland). Für die folgenden Vergleiche wird auf die Ergebnisse des Deutschen Kollektives zurückgegriffen.

Wegener, G.; Glos, P.; Tratzmiller, M.;

Teilprojekt 14

Hochwertige Bauprodukte aus Massivholz und Holzwerkstoffen aus starkem Stammholz Technische Universität München

Da es sich bei diesem Projekt um ein Starkholzprojekt handelt werden nur ausgewählte Ergebnisse für die Vergleiche verwendet.

Teischinger, A.; Patzelt, M.;

XXL-Wood

Materialkenngrößen als Grundlage für innovative Verarbeitungstechnologien und Produkte zur wirtschaftlich nachhaltigen Nutzung der Österreichischen Nadelstarkholzreserven Berichte aus Energie- und Umweltforschung 27/2006 Bundesministerium für Verkehr, Innovation und Technologie

Steiger, R.; Bieg- Zug- und Druckversuche an Schweizer Fichtenholz Institut für Baustatik und Konstruktion, ETH Zürich Birkhäuser Verlag Basel · Boston · Berlin, 1995

Ausbeuten bei Verwendung unterschiedlicher Sortierkombinationen Die Gegenüberstellung der nach der EN 14081 anerkannten Sortiernorm DIN 4074-1 für die Durchführung von visuellen Sortierungen und der Zuordnung in Festigkeitsklassen nach EN 384 zeigen bei einem Vergleich der Ergebnisse nach EN 408 ein konservatives Ergebnis. Bei Verwendung der Sortierklassenkombination C30-C24-C18 kommen nach Einstufung in die Sortierklassen nach EN 14081-2 um 74% höhere Ausbeuten der Festigkeitsklasse C30, dafür bleibt allerdings für die Festigkeitsklasse C24 nichts mehr übrig. Der Vielfach gehörte Umstand dass speziell beim Gebirgsholz die maschinelle Sortierung schlechte Ausbeuten bringt, und aus diesem Grund noch häufig visuell nachsortiert werden muss, kann durch diese Forschungsergebnisse daher nicht bestätigt werden. Ein Vergleich

der Werte aus den labortechnischen Untersuchungen mit den Ergebnissen aus der maschinellen Sortierung zeigt eine sehr gute Übereinstimmung der Ergebnisse. Die Möglichkeiten Gebirgsholz daher maschinell zu sortieren können somit als gegeben und eingehalten betrachtet werden.

Holzbaulehrstuhl, Universität Innsbruck

Um Ausbeuten in allen Sortierklassen zu erhalten könnten andere Sortierklassenkombinationen zielführend sein. Es wird daher die Verwendung anderer Sortierklassenkombinationen nach EN 14081-4 empfohlen.

Abbildung 89: Verwendung unterschiedlicher Sortierklassenkombinationen nach EN 14081-4 [26]

Bei genauerer Betrachtung der ist bei der Verwendung unterschiedlicher Sortierkombination zu erkennen, dass es vor allem bei der Kombination C30-C18 (Tabelle 35) zu einer Verlagerung der Ausbeuten zu Gunsten der Prüfkörper auf der Nordseite kommt.

		(C30 - C1	3		C35 - C2	24 - C16		C	C40 - C24	4	
		C30	C18	REJ	C35	C24	C16	REJ	C40	C24	REJ	Casamt
		Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Gesamt
Standort	810m - S (ST)	5	10	1	0	9	6	1	0	14	2	16
	1030m - S (ST)	16	0	0	3	13	0	0	1	15	0	16
	1190m - S (ST)	3	13	0	0	8	7	1	0	15	1	16
	1390m - S (ST)	1	14	1	0	3	8	5	0	6	10	16
	1550m - S (ST)	7	9	0	0	14	2	0	0	16	0	16
	1880m - S (ST)	5	11	0	0	13	3	0	0	15	1	16
	2060m - S (ST)	1	15	0	0	4	12	0	0	12	4	16
	Koll · Südtirol-Südbang	38	72	2	3	64	38	7	1	93	18	112
		33,9%	64,3%	1,8%	2,7%	57,1%	33,9%	6,3%	0,9%	83,0%	16,1%	100,0%
	820m - N (ST)	12	4	0	4	8	4	0	3	13	0	16
	1010m - N (ST)	12	4	0	6	9	1	0	3	13	0	16
	1250m - N (ST)	7	4	5	1	6	3	6	0	10	6	16
	1380m - N (ST)	16	0	0	7	9	0	0	3	13	0	16
163 185	1630m - N (ST)	16	0	0	6	10	0	0	2	14	0	16
	1850m - N (ST)	12	4	0	0	16	0	0	0	16	0	16
	Koll - Südtirol-Nordbang	75	16	5	24	58	8	6	11	79	6	96
		78,1%	16,7%	5,2%	25,0%	60,4%	8,3%	6,3%	11,5%	82,3%	6,3%	100,0%
	1160m - S (NT)	24	12	0	6	29	1	0	2	34	0	36
	1400m - S (NT)	34	0	0	15	19	0	0	7	27	0	34
	1600m - S (NT)	26	2	0	7	21	0	0	3	25	0	28
	1780m - S (NT)	13	15	0	0	19	9	0	0	27	1	28
	Koll.: Nordtirol-Südhang	97	29	0	28	88	10	0	12	113	1	126
		77,0%	23,0%	0,0%	22,2%	69,8%	7,9%	0,0%	9,5%	89,7%	0,8%	100,0%
	1060m - N (NT)	17	11	0	7	19	2	0	3	25	0	28
	1190m - N (NT)	22	2	0	10	14	0	0	4	20	0	24
	1380m - N (NT)	22	6	0	3	23	2	0	0	28	0	28
	1620m - N (NT)	28	8	0	3	31	2	0	2	34	0	36
	1700m - N (NT)	4	22	0	0	16	10	0	0	23	3	26
	Koll.: Nordtirol-Nordhang	93	49	0	23	103	16	0	9	130	3	142
		65,5%	34,5%	0,0%	16,2%	72,5%	11,3%	0,0%	6,3%	91,5%	2,1%	100,0%
	Gesamt	303	166	7	78	313	72	13	33	415	28	476
	5050111	63,7%	34,9%	1,5%	16,4%	65,8%	15,1%	2,7%	6,9%	87,2%	5,9%	100,0%

Tabelle 34: Verteilung der Festigkeitsklassen nach den Kollektiven Nord- und Südtirol

		guerre	orighter	tontabo			angenp	0010011				
		(C30 - C1	В		C35 - C2	24 - C16		(C40 - C24	4	
		C30	C18	REJ	C35	C24	C16	REJ	C40	C24	REJ	Casamt
		Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Anzahl	Gesami
Standort	810m - S (ST)	5	10	1	0	9	6	1	0	14	2	16
	1030m - S (ST)	16	0	0	3	13	0	0	1	15	0	16
	1190m - S (ST)	3	13	0	0	8	7	1	0	15	1	16
	1390m - S (ST)	1	14	1	0	3	8	5	0	6	10	16
	1550m - S (ST)	7	9	0	0	14	2	0	0	16	0	16
	1880m - S (ST)	5	11	0	0	13	3	0	0	15	1	16
	2060m - S (ST)	1	15	0	0	4	12	0	0	12	4	16
	1160m - S (NT)	24	12	0	6	29	1	0	2	34	0	36
	1400m - S (NT)	34	0	0	15	19	0	0	7	27	0	34
	1600m - S (NT)	26	2	0	7	21	0	0	3	25	0	28
	1780m - S (NT)	13	15	0	0	19	9	0	0	27	1	28
	Südbang	135	101	2	31	152	48	7	13	206	19	238
	Suthany	56,7%	42,4%	0,8%	13,0%	63,9%	20,2%	2,9%	5,5%	86,6%	8,0%	100,0%
	820m - N (ST)	12	4	0	4	8	4	0	3	13	0	16
	1010m - N (ST)	12	4	0	6	9	1	0	3	13	0	16
	1250m - N (ST)	7	4	5	1	6	3	6	0	10	6	16
	1380m - N (ST)	16	0	0	7	9	0	0	3	13	0	16
	1630m - N (ST)	16	0	0	6	10	0	0	2	14	0	16
	1850m - N (ST)	12	4	0	0	16	0	0	0	16	0	16
	1060m - N (NT)	17	11	0	7	19	2	0	3	25	0	28
	1190m - N (NT)	22	2	0	10	14	0	0	4	20	0	24
	1380m - N (NT)	22	6	0	3	23	2	0	0	28	0	28
	1620m - N (NT)	28	8	0	3	31	2	0	2	34	0	36
	1700m - N (NT)	4	22	0	0	16	10	0	0	23	3	26
	Nordbang	168	65	5	47	161	24	6	20	209	9	238
	literation	70,6%	27,3%	2,1%	19,7%	67,6%	10,1%	2,5%	8,4%	87,8%	3,8%	100,0%
	Gacamt	303	166	7	78	313	72	13	33	415	28	476
	Jesaint	63,7%	34,9%	1,5%	16,4%	65,8%	15,1%	2,7%	6,9%	87,2%	5,9%	100,0%

Tabelle 35: Verteilung der Festigkeitsklassen nach den Hangexpositionen Nord und Süd

		r	Mittlere Jahrringbreiten [mm]						
Gebirgsholz		Mittelwert	Maximum	Minimum	Std.abw.				
Nord / Südtirol	Nordtirol - Südhang	1,72	4,89	0,80	0,84				
	Südtirol - Südhang	2,58	7,11	0,69	1,28				
	Koll.: Südhang	2,12	7,11	0,69	1,15				
	Nordtirol - Nordhang	2,09	5,25	0,75	0,79				
	Südtirol - Nordhang	2,28	6,90	0,78	1,39				
	Koll.: Nordhang	2,17	6,90	0,75	1,08				
	Gesamt	2,14	7,11	0,69	1,11				
XXL-Wood: 300-500 m ü. NN.		2,85	8,69	1,33	1,06				
Holzknecht (DE: 100)		2,50	5,00	1,12	0.86				

Taballa 24 Mittle The latence for the latence 7

Mittlere Jahrringbreiten

Ein Vergleich der mittleren Jahrringbreiten mit den Werten aus anderen Forschungsprojekten zeigt, dass das untersuchte Material vor allem bei den kleinen Jahrringbreiten deutlich unter den Werten der anderen Projekte liegt. Bei den Mittelwerten ist zu erkennen dass allerdings diese Unterschiede wieder relativiert werden. Mit zunehmender Höhenstufe lässt sich eine abnehmende Streuung beobachten, und kann somit als eine Art Homogenisierung angesehen werden.

Astparameter

Bei der Analyse der Astparameter zeigt sich ein sehr guter Zusammenhang mit den ehemaligen Bewirtschaftungsformen der gewählten Wuchsorte. So treten zum Beispiel an ehemals beweideten Flächen größere Gesamtastigkeiten und auch häufig größere Einzeläste auf, als das bei eher schattigen seit jeher bewaldeten vor allem nordseitigen Standorten der Fall ist. Dieser Umstand lässt sich auch teilweise in den Steifigkeitskennwerten und den Biegefestigkeiten ablesen. Ein Vergleich der hier ermittelten Astparameter mit den Werten von Holzknecht [14] zeigt im Wesentlichen keine Unterschiede.

		maschir	maschineller Astparameter - größte Astigkeit						
Gebirgsholz		Mittelwert	Maximum	Minimum	Std.abw.				
Nord / Südtirol	Nordtirol - Südhang	2749	5636	962	901				
	Südtirol - Südhang	2358	5142	723	853				
	Koll.: Südhang	2542	5636	723	896				
	Nordtirol - Nordhang	2146	5674	229	1108				
	Südtirol - Nordhang	2179	4961	561	830				
	Koll.: Nordhang	2166	5674	229	952				
	Gesamt	2355	5674	229	942				
Dipl. Holzkned	cht: KollDE	2538	5783	506	882				

Tabelle 37: Größte Astigkeit Kn001, Zusammenfassung und Vergleiche

Tabelle 38: Gesamtastigkeit, Zusammenfassun	g und	Vergleiche
---	-------	------------

		maschine	maschineller Astparameter - Gesamtastigkeit [-]						
Gebirgsholz		Mittelwert	Maximum	Minimum	Std.abw.				
Nord / Südtirol	Nordtirol - Südhang	4888	11286	1025	1869				
	Südtirol - Südhang	4217	9187	624	1682				
	Koll.: Südhang	4533	11286	624	1800				
	Nordtirol - Nordhang	3507	9470	173	1938				
	Südtirol - Nordhang	3592	7998	622	1614				
	Koll.: Nordhang	3557	9470	173	1751				
	Gesamt	4049	11286	173	1840				
Holzknecht; S: k	KollDE	4519	8789	851	1767				

Biegeprüfungen

		Biegefestigkeit [N/mm²]				
Gebirgsholz		Mittelwert	Maximum	Minimum	Std.abw.	
Nord / Südtirol	Nordtirol - Südhang	47,35	78,10	12,80	11,37	
	Südtirol - Südhang	36,63	64,20	13,50	10,48	
	Koll.: Südhang	42,30	78,10	12,80	12,18	
	Nordtirol - Nordhang	45,38	73,20	21,50	12,40	
	Südtirol - Nordhang	43,69	78,30	12,20	14,28	
	Koll.: Nordhang	44,70	78,30	12,20	13,19	
	Gesamt	43,50	78,30	12,20	12,74	
Schweizer Fi: Qual. Normal		37,30	60,10	18,60	11,70	
Teilprojekt 14: (Abstand Mark: 137,5 mm)		39,90	67,10	9,50	16,60	
Holzknecht (DE; 100)		38,20	72,50	19,70	10,00	

Tabelle 39: Biegefestigkeiten, Zusammenfassung und Vergleiche

Tabelle 40: Globaler Biege E-Modul, Zusammenfassung und Vergleiche

		Globaler Biege E-Modul [N/mm ²]				
Gebirgsholz		Mittelwert	Maximum	Minimum	Std.abw.	
Nord / Südtirol	Nordtirol - Südhang	12667	18032	8511	2025	
	Südtirol - Südhang	9737	14747	5628	1958	
	Koll.: Südhang	11288	18032	5628	2471	
	Nordtirol - Nordhang	11732	20041	6745	2463	
	Südtirol - Nordhang	11832	17786	4400	2737	
	Koll.: Nordhang	11772	20041	4400	2572	
	Gesamt	11530	20041	4400	2531	
Schweizer Fi: Qual. Normal		11603	15563	8367	1838	
Teilprojekt 14: (Abstand Mark: 130 mm)		12839	18207	9720	2514	
Holzknecht (DE; 100)		10058	17114	5866	2268	

Tabelle 41: Rohdichte.	Zusammenfassung	und Veraleiche
Tubette 41. Ronatente,	Zusunnennussung	und vergeerene

		Norm-Rohdichte [kg/m ³]				
Gebirgsholz		Mittelwert	Maximum	Minimum	Std.abw.	
Nord / Südtirol	Nordtirol - Südhang	433	513	370	35	
	Südtirol - Südhang	406	519	349	27	
	Koll.: Südhang	420	519	349	34	
	Nordtirol - Nordhang	405	540	352	32	
	Südtirol - Nordhang	419	489	343	35	
	Koll.: Nordhang	410	540	343	34	
	Gesamt	415	540	343	35	
Schweizer Fi: Qual. Normal		450	486	408	23	
Teilprojekt 14: (Abstand Mark: 130 mm)		493	580	422	54	
XXL-Wood: 300 - 500 Hm		456	590	378	42	
Holzknecht (DE; 100)		432	571	343	51	

Das untersuchte Probenmaterial weist trotz der schlechten Mittelwerte von 36,63 N/mm² des Kollektivs S-(ST) eine relativ hohe Biegebeanspruchbarkeit von 43,50 N/mm² auf. Sowohl der maximale Wert von 78,30 N/mm² als auch der kleinste Wert mit 12,20 N/mm² ist dabei am Nordhang in Südtirol aufgetreten. Ein Sachverhalt dessen Begründung in den Besonderheiten der jeweiligen Standorte zu finden ist. Gemäß EN 338 [24] kann auf Grund der hohen Biegefestigkeit davon ausgegangen werden, dass auch relativ hohe Festigkeitskennwerte bei Zug- und Druckfestigkeiten vorliegen. Da allerdings im Vergleich zu Tieflagenhölzer teilweise geringere Steifigkeiten (Elastizitätsmodul) und Rohdichten zu verzeichnen sind, resultiert sehr häufig trotz der angeführten guten Werte der Biegefestigkeiten eine Einstufung in niedrigere Festigkeitsklassen auf Grund der geringeren Werte der Rohdichten bzw. Steifigkeiten. Abhängigkeiten von den Höhenstufen sind nicht festzustellen sondern werden von den Effekten wie zum Beispiel der Hangorientierung und der ehemaligen Bewirtschaftungsform des Standortes überlagert.

Der Vergleich mit den Ergebnissen zu den Biegefestigkeiten aus anderen Forschungsprojekten zeigt, dass bei dem untersuchten Probenmaterial trotz der geringen Werte des Kollektivs S-(ST) eine sehr hohe Biegefestigkeit vorhanden ist.

Bei den Steifigkeitskennwerten des untersuchten Materials sind dieselben Aspekte wie bei der Biegefestigkeit aufgetreten. Mit einem Mittelwert von 11530 N/mm² ist es in derselben Größenordnung wie das Schweizer Fichtenholz, um 15 % über den untersuchten Brettern aus dem Sauerland (Holzknecht) und rund 10 % unter den angegebenen Werten aus den Untersuchungen zum Teilprojekt 14. Die teilweise doch geringen Werte der E-Moduli lassen sich vor allem durch die Astigkeiten ("Gesamtastigkeiten", "Größte Astigkeit") erklären. Die Rohdichte ist mit 415 kg/m³ um bis zu 16 % geringer als die angegebenen Werte der Vergleichsprojekte. Da immer wieder über den Zusammenhang von Rohdichte und Festigkeit gesprochen wird, scheint hier das Gebirgsholz trotz deutlich geringerer Rohdichten eine relativ hohe Biegebeanspruchbarkeit aufzuweisen.

Zwischen den beiden untersuchten Provienzien Nord- und Südtirol konnten keine eindeutigen Unterschiede herausgefunden werden. Allerdings zeigten vor allem einige Standorte am Südhang Südtirol relativ schlechte elasto-mechanische Parameter, was allerdings auf die prinzipielle Auswahl der Prüfkörper zurückgeführt wird, und daraus keine statistischen Aussagen abzuleiten sind.

Im Hinblick auf die Anwendung im Ingenieurholzbau kann auf Grund der erhaltenen Ergebnisse bzw. den Rückschlüssen daraus, vor allem bei Bauteilen die hoher Festigkeiten bedürfen dem Gebirgsholz Stärken zugerechnet werden. Bedingt durch die teilweise geringen Steifigkeiten (E-Moduli) und Rohdichten kann es allerdings auch zu höheren Verformungen von Bauteilen kommen, die es zu berücksichtigen gilt.

Gebirgsholz		Mittelwerte			
		β _{ℓ,max} [%]	β _{r,max} [%]	β _{t,max} [%]	
Nord / Südtirol	Nordtirol - Südhang	0,35	4,64	9,59	
	Südtirol - Südhang	0,32	4,10	9,16	
	Koll.: Südtirol	0,33	4,39	9,39	
	Nordtirol - Nordhang	0,34	4,20	9,17	
	Südtirol - Nordhang	0,27	4,30	9,23	
	Koll.:Nordtirol	0,31	4,24	9,20	
	Gesamt	0,32	4,32	9,29	
DIN 52184		0,20 - 0,40	3,70	8,50	
ÖNORM B 3012		0,30	3,60	7,80	

Tabelle 42: Maximale line	are Quellmaße.	Zusammenfassung	und Veraleiche
	are ductimane,	Zusunnennussung	j unu vergierene

Die ermittelten maximalen longitudinalen Quellmaße sind im Bereich der Angaben für Fichtenholz (Picea abies) in den beiden angeführten Normen. Die Angaben zu den Mittelwerten der radialen und tangentialen Quellmaße werden um bis 16 % überschritten.

Haselwuchs

Das Vorkommen von leichtem Haselwuchs konnte vor allem auf den oberen Höhenstufen der Prüfkörper vom Standort Südtirol / Südhang festgehalten werden (>50 %). Allerdings sind diese Anomalien des Wuchses über den Baumstamm lokal begrenzt aufgetreten.

- 9 Anhang A Zusammenfassung einiger wichtiger physikalischer und elastomechanischer Eigenschaften, sowie Angaben zu den Standorten
- 9.1 Standorte Kollektiv Südtirol

9.1.1 Standort 1A: Südtirol – Südhang: 810 m ü. NN.

Angaben zum Standort:

Besitzer:	Silginer Johann – Pitterle – St. Sigmund
	Sigmunderweg Nr. 1, 39030 Kiens
Grundparzelle:	4
Flurname:	"Marchen"
Gelände:	sehr steil
Wasserhaushalt:	frisch
Besonderheiten:	In den 50er Jahren, wurde unmittelbar unterhalb der Probebloche ein Kahlschlag durchgeführt, wodurch sich wahrscheinlich die Wachstumsbedingungen geändert haben. Generell sind an diesem Standort die Bäume buchsig

Tabelle 43: Standort: 1A - 810m-S (ST), Statistische Auswertung

Standort: 1A - 810m-S (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	32,48	47,90	18,10	8,72
Globaler E-Modul [N/mm²]	16	9190	12570	5638	1868
Norm-Rohdichte [kg/m³]	16	389	437	349	31
Mittlere Jahrringbreiten [mm]	16	4,19	7,11	2,48	1,27
Feuchtigkeit [%]	16	10,7	11,2	10,1	0,3

9.1.2 Standort 2A: Südtirol – Südhang: 1030 m ü. NN.

Angaben zum Standort:

Besitzer:	Schmid Ewald – Wiedenhofer
	Pustertaler Sonnenstrasse Nr.18, 39030 Terenten
Grundparzelle:	1858
Flurname:	"Schwalbenwand"
Gelände:	Senke
Wasserhaushalt:	frisch
Besonderheiten:	Verwitterungsbeständiger Granit, daher eher schlechter Boden

Tabelle 44: Standort: 2A - 1030m-S (ST), Statistische Auswertung
--

Standort: 2A - 1030m-S (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	45,74	64,20	33,20	9,58
Globaler E-Modul [N/mm²]	16	12769	14747	10472	1194
Norm-Rohdichte [kg/m³]	16	445	519	421	26
Mittlere Jahrringbreiten [mm]	16	1,46	2,23	0,69	0,47
Feuchtigkeit [%]	16	11,0	11,5	10,7	0,2

9.1.3 Standort 3A: Südtirol – Südhang: 1190 m ü. NN.

Angaben zum Standort:

Besitzer:	Gemeinde Terenten, Unterpertinger Walter
	St. Georgs Str. Nr.1
	39030 Terenten
Grundparzelle:	222
Flurname:	"Pflunge"
Gelände:	Auslaufende Kuppe
Wasserhaushalt:	eher trocken
Besonderheiten:	Keine gute Wuchsleistung, eingetragen im Historischen Kataster von
	1858 als reine Weide, welche aber vor ca. 70 Jahren aufgelassen wurde

Tabelle 45: Standort: 3A - 1190m-S (ST), Statistische Auswertung

Standort: 3A - 1190m-S (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	34,60	55,50	21,00	9,70
Globaler E-Modul [N/mm²]	16	9949	13160	7354	1521
Norm-Rohdichte [kg/m³]	16	411	440	385	16
Mittlere Jahrringbreiten [mm]	16	3,06	3,88	1,37	0,70
Feuchtigkeit [%]	16	10,7	11,1	10,3	0,3

9.1.4 Standort 4A: Südtirol – Südhang: 1390 m ü. NN.

Angaben zum Standort:

Besitzer:	Schmid Ewald – Wiedenhofer
	Pustertaler Sonnenstrasse Nr.18
	39030 Terenten
Grundparzelle:	3117
Flurname:	"Lana"
Gelände:	mäßig steil
Wasserhaushalt:	trocken
Besonderheiten:	Dieses Gebiet wurde seit jeher geweidet, bis ca. in die 50er Jahre, wo
	eine Aufforstung stattfand. Auch Streunutzung wurde hier praktiziert

Tabelle 46: Standort: 4A - 1390m-S (ST), Statistische Auswertung

Standort: 4A - 1390m-S (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	28,76	45,40	18,20	7,78
Globaler E-Modul [N/mm²]	16	7821	11454	5628	1726
Norm-Rohdichte [kg/m³]	16	397	448	363	23
Mittlere Jahrringbreiten [mm]	16	3,59	5,70	1,93	1,30
Feuchtigkeit [%]	16	10,7	11,2	10,1	0,4

9.1.5 Standort 5A: Südtirol – Südhang: 1550 m ü. NN.

Angaben zum Standort:

Besitzer:	Schmid Ewald – Wiedenhofer
	Pustertaler Sonnenstrasse Nr.18
	39030 Terenten
Grundparzelle:	3117
Flurname:	"Forcha"
Gelände:	steil
Wasserhaushalt:	trocken
Besonderheiten:	keine

Tabelle 47: Standort: 5A - 1550m-S (ST), Statistische Auswertung

Standort: 5A - 1550m-S (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	41,54	53,20	26,70	8,37
Globaler E-Modul [N/mm²]	16	9666	11954	7886	1131
Norm-Rohdichte [kg/m³]	16	404	431	391	13
Mittlere Jahrringbreiten [mm]	16	2,66	3,71	1,97	0,56
Feuchtigkeit [%]	16	10,8	11,3	10,4	0,2

9.1.6 Standort 6A: Südtirol – Südhang: 1880 m ü. NN.

Angaben zum Standort:

Besitzer:	Gemeinde Terenten
	Unterpertinger Walter
	St. Georgs Str. Nr.1, 39030 Terenten -
Grundparzelle:	3158
Flurname:	"Oberpertinger Hütte"
Gelände:	steil
Wasserhaushalt:	trocken
Besonderheiten:	Ausformung und Wüchsigkeit besser bei Fichte als bei Lärche, früher wurde dort das Vieh durchgetrieben, heute nicht mehr

Tabelle 48: Standort: 6A - 1880m-S (ST), Statistische Auswertung

Standort: 6A - 1880m-S (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	38,28	53,20	24,00	7,34
Globaler E-Modul [N/mm²]	16	9956	11903	8742	864
Norm-Rohdichte [kg/m³]	16	390	416	374	11
Mittlere Jahrringbreiten [mm]	16	1,49	2,26	1,10	0,31
Feuchtigkeit [%]	16	10,9	11,3	10,5	0,2

9.1.7 Standort 7A: Südtirol – Südhang: 2060 m ü. NN.

Angaben zum Stand	<u>dort:</u>
Besitzer:	Gemeinde Terenten, Unterpertinger Walter
	St. Georgs Str. Nr.1, 39030 Terenten
Grundparzelle:	3158
Flurname:	"Pertingeralm"
Gelände:	geneigt
Wasserhaushalt:	trocken
Besonderheiten:	Leichte Beweidung auch heute noch. Stark verstrauchte Flächen durch
	Alpenrose

Tabelle 49: Standort: 7A - 2060m-S (ST), Statistische Auswertung

Standort: 7A - 2060m-S (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	35,03	57,80	13,50	12,55
Globaler E-Modul [N/mm²]	16	8807	11563	7243	1033
Norm-Rohdichte [kg/m³]	16	410	456	361	23
Mittlere Jahrringbreiten [mm]	16	1,61	2,23	1,17	0,27
Feuchtigkeit [%]	16	11,0	11,7	10,5	0,3

9.1.8 Standort 1B: Südtirol – Nordhang: 820 m ü. NN.

Angaben zum Standort:

Besitzer:	Niederbacher Alfred – Ploner
	St. Sigmund - Ilstern Nr.14; 39030 Kiens
Grundparzelle:	607
Flurname:	"Badl"
Gelände:	geneigt
Wasserhaushalt:	frisch
Besonderheiten:	Früher Beweidung und Streunutzung

Tabelle 50: Standort: 1B - 820m-N (ST), Statistische Auswertung

Standort: 1B - 820m-N (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	44,47	64,10	27,70	12,34
Globaler E-Modul [N/mm²]	16	11981	16963	6712	2918
Norm-Rohdichte [kg/m³]	16	417	480	348	45
Mittlere Jahrringbreiten [mm]	16	3,12	6,90	1,72	1,82
Feuchtigkeit [%]	16	10,7	11,5	10,2	0,4

9.1.9 Standort 2B: Südtirol – Nordhang: 1010 m ü. NN.

Angaben zum Stando	<u>rt:</u>					
Besitzer:	Silginer Johann – Pitterle					
	St. Sigmu	und - Sigm	underweg N	Nr.1, 39030	Kiens	
Grundparzelle:	639					
Flurname:	"Schatter	nwald"				
Gelände:	steil					
Wasserhaushalt:	frisch					
Besonderheiten:	Große Ste	einblöcke ı	mit auffallei	nd viel Lärd	henanteil:	
Tabelle 51: Standort: 2B	- 1010m-N (ST), Statistis	che Auswertur	ng		
Charlent OD 1010 N	(CT)					

Standort: 2B - 1010m-N (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	45,83	78,30	17,30	17,51
Globaler E-Modul [N/mm²]	16	12880	17786	8911	2725
Norm-Rohdichte [kg/m³]	16	423	489	343	45
Mittlere Jahrringbreiten [mm]	16	2,15	4,31	1,03	0,96
Feuchtigkeit [%]	16	10,6	11,0	10,0	0,3

9.1.10 Standort 3B: Südtirol – Nordhang: 1250 m ü. NN.

Angaben zum Standort:

Besitzer:	Int. Brunner Weide, Silginer Johann
	Sigmunderweg Nr.1, 39030 Kiens
Grundparzelle:	729/1
Flurname:	"Rabwald"
Gelände:	mäßig steil
Wasserhaushalt:	frisch
Besonderheiten:	Beweidung durch Kühe und Streunutzung bis in die 70er Jahre

Tabelle 52: Standort: 3B - 1250m-N (ST), Statistische Auswertung

Standort: 3B - 1250m-N (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	28,12	62,20	12,20	14,33
Globaler E-Modul [N/mm²]	16	9222	14690	4400	3154
Norm-Rohdichte [kg/m³]	16	401	455	356	30
Mittlere Jahrringbreiten [mm]	16	3,99	6,00	1,88	1,27
Feuchtigkeit [%]	16	10,4	11,0	10,1	0,2

9.1.11 Standort 4B: Südtirol – Nordhang: 1380 m ü. NN.

Angaben zum Stando	<u>rt:</u>
Besitzer:	Silginer Johann – Pitterle
	St. Sigmund - Sigmunderweg Nr.1, 39030 Kiens
Grundparzelle:	741
Flurname:	"Zimitna Hochwald"
Gelände:	mäßig steil
Wasserhaushalt:	frisch
Besonderheiten:	keine
Tabelle 53: Standort: 4B -	- 1380m-N (ST), Statistische Auswertung

Standort: 4B - 1380m-N (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	48,01	61,90	29,70	9,25
Globaler E-Modul [N/mm²]	16	13185	16030	10820	1655
Norm-Rohdichte [kg/m³]	16	441	475	392	28
Mittlere Jahrringbreiten [mm]	16	1,80	2,33	1,22	0,34
Feuchtigkeit [%]	16	11,1	11,6	10,7	0,3

9.1.12 Standort 5B: Südtirol – Nordhang: 1630 m ü. NN.

|--|

Besitzer:	Gemeinde Rodeneck - E.B.N.R - Kolhaupt Josef
	Vill Nr.31/11, 39030 Rodeneck
Grundparzelle:	Abt. 4
Flurname:	"Baumannlacke"
Gelände:	geneigt
Wasserhaushalt:	frisch
Besonderheiten:	Tiefgründige Böden, Grundgestein Phyllit, Schläge neigen zur
	Vergrasung, starke Verbiss- und Schälschäden -
	Rotwildeinstandsgebiet, bis 1958 intensive Beweidung - danach
	Einfriedung 6.000lfm

Tabelle 54: Standort: 5B - 1630m-N (ST), Statistische Auswertung

Standort: 5B - 1630m-N (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	54,21	66,10	44,60	6,37
Globaler E-Modul [N/mm²]	16	13347	15872	11772	1366
Norm-Rohdichte [kg/m³]	16	427	477	386	25
Mittlere Jahrringbreiten	16	1,23	1,58	0,78	0,26
[mm]					
Feuchtigkeit [%]	16	11,3	11,6	10,9	0,2

9.1.13 Standort 6B: Südtirol – Nordhang: 1850 m ü. NN.

Angaben zum Stando	ort:
Besitzer:	Gemeinde Rodeneck - E.B.N.R - Kolhaupt Josef
	Vill Nr.31/11, 39030 Rodeneck
Grundparzelle:	Abt. 6
Flurname:	"Riem"
Gelände:	geneigt
Wasserhaushalt:	frisch
Besonderheiten:	Tiefgründige Böden, bis 1970 nur Holznutzungen von Brennholz - Bauholz für Almhütten - Stagen für Heutransport, ab 2000 streichen der Jungbäume mit Wildverbissmittel, Auerhahn Balzplatz, auch hier bis 1958 intensive Beweidung, Rotwildeinstandsgebiet

Tabelle 55: Standort: 6B - 1850m-N (ST), Statistische Auswertung

Standort: 6B - 1850m-N (ST)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	16	41,54	68,70	25,10	9,75
Globaler E-Modul [N/mm²]	16	10375	14349	8665	1344
Norm-Rohdichte [kg/m³]	16	403	418	389	11
Mittlere Jahrringbreiten [mm]	16	1,41	1,73	0,97	0,23
Feuchtigkeit [%]	16	10,9	11,3	9,8	0,5

9.2 Standorte Kollektiv Nordtirol

9.2.1 Standort 1S: Nordtirol – Südhang: 1160 m ü. NN.

<u>Angaben zum Standort:</u>	
Bezeichnung	Warmer basischer (Lärchen-) Fichtenwald, Fi 7
Gelände:	Hangneigung 50-75%, Mittelhang
Wasser/Nährstoffhaushalt:	mittelmäßig
Gesteine:	karbonatisch-silikatisches Mischgestein, reiche
	Karbonatgesteine, auch basenreiche Silikatgesteine oder
	Lockersedimente
Boden:	mäßig trockene, verbraunte Pararendzina, schwach
	karbonathaltige Braunerde; seicht - bis mittelgründig, leichte
	bis mittlere Bodenart
Humus:	typischer oder mullartiger Moder
Besonderheiten:	Lockerer grasreicher Fichtenwald, meist tief beastet;
	Rindenschäden recht häufig; ohne Strauchschicht; Lärche oft
	sekundär; Kiefer und Pioniergehölze vereinzelt in Beständen

Standort: 1S-1160m S (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	36	41,49	62,10	23,60	10,39
Globaler E-Modul [N/mm²]	36	12142	18032	8949	1995
Norm-Rohdichte [kg/m³]	36	411	488	370	30
Mittlere Jahrringbreiten [mm]	36	2,80	4,89	1,35	0,76
Feuchtigkeit [%]	36	11,1	12,0	10,6	0,3

Tabelle 56: Standort: 1S-1160m S (NT), Statistische Auswertung

Holzbaulehrstuhl, Universität Innsbruck

9.2.2 Standort 2S: Nordtirol – Südhang: 1400 m ü. NN.

<u>Angaben zum Standort:</u>	
Bezeichnung:	Warmer basischer (Lärchen-) Fichtenwald, Fi 7
Gelände:	Hangneigung 50-75%, Mittelhang
Wasser/Nährstoffhaushalt:	mittelmäßig
Gesteine:	karbonatisch-silikatisches Mischgestein, reiche
	Karbonatgesteine, auch basenreiche Silikatgesteine oder
	Lockersedimente
Boden:	mäßig trockene, verbraunte Pararendzina, schwach
	karbonathaltige Braunerde; seicht - bis mittelgründig, leichte
	bis mittlere Bodenart
Humus:	typischer oder mullartiger Moder
Besonderheiten:	Lockerer grasreicher Fichtenwald, meist tief beastet;
	Rindenschäden recht häufig; ohne Strauchschicht; Lärche oft
	sekundär; Kiefer und Pioniergehölze vereinzelt in Beständen

Standort: 2S-1400m S (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	34	52,96	78,10	35,00	11,56
Globaler E-Modul [N/mm²]	34	14160	17774	11765	1721
Norm-Rohdichte [kg/m³]	34	462	513	402	32
Mittlere Jahrringbreiten [mm]	34	1,44	2,58	0,96	0,37
Feuchtigkeit [%]	34	11,7	13,1	10,9	0,5

Tabelle 57: Standort: 2S-1400m S (NT), Statistische Auswertung

9.2.3 Standort 3S: Nordtirol – Südhang: 1600 m ü. NN.

<u>Angaben zum Standort.</u>	
Bezeichnung:	Warmer basischer (Lärchen-) Fichtenwald, Fi 7
Gelände:	Hangneigung 50-75%, Mittelhang
Wasser/Nährstoffhaushalt:	mittelmäßig
Gesteine:	karbonatisch-silikatisches Mischgestein, reiche
	Karbonatgesteine, auch basenreiche Silikatgesteine oder
	Lockersedimente
Boden:	mäßig trockene, verbraunte Pararendzina, schwach
	karbonathaltige Braunerde; seicht - bis mittelgründig, leichte
	bis mittlere Bodenart
Humus:	typischer oder mullartiger Moder
Besonderheiten:	Lockerer grasreicher Fichtenwald, meist tief beastet;
	Rindenschäden recht häufig; ohne Strauchschicht; Lärche oft
	sekundär; Kiefer und Pioniergehölze vereinzelt in Beständen

Angaben zum Standort:

Standort: 3S-1600m S (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	28	52,73	66,40	41,10	6,80
Globaler E-Modul [N/mm²]	28	13147	15774	10347	1510
Norm-Rohdichte [kg/m³]	28	444	488	394	28
Mittlere Jahrringbreiten [mm]	28	1,22	1,88	0,84	0,23
Feuchtigkeit [%]	28	11,7	13,0	10,6	0,6

Tabelle 58: Standort: 3S-1600m S (NT), Statistische Auswertung

9.2.4 Standort 4S: Nordtirol – Südhang: 1780 m ü. NN.

<u>Angaben zum Standort:</u>	
Bezeichnung:	Subalpiner armer Silikat-(Lärchen-)Fichtenwald
Gelände:	Hangneigung bis 60%, Mittelhang
Wasser/Nährstoffhaushalt:	gute Wasserversorgung; Nährstoffgehalt mittelmäßig
Gesteine:	diverse Silikatgesteine, silikatische Lockersedimente,
	versauerte Mischsubstrate, in den Randalpen tonige Gesteine
Boden:	sehr frischer, mittelgründiger Podsol oder Semipodsol,
	seltener Podsol-Ranker und podsolige Braunerde, Staupodsol
Humus:	typischer Rohhumus, rohhumusartiger Moder
Besonderheiten:	Meist flach, typisch sind spitzkronige Plattenfichten; stark
	deckende Bodenvegetation; teilweise Lärche beigemischt;
	wertvolles engringiges Holz, meist tief beastet, gering wüchsige
	Bestände

Tabelle 59: Standort: 4S-1780m S (NT), Statistische Auswertung

Standort: 4S-1780m S (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	28	42,68	60,30	12,80	10,54
Globaler E-Modul [N/mm²]	28	11050	13693	8511	1345
Norm-Rohdichte [kg/m³]	28	414	448	379	21
Mittlere Jahrringbreiten [mm]	28	1,18	1,78	0,80	0,26
Feuchtigkeit [%]	28	11,6	12,7	10,7	0,7

9.2.5 Standort 1N: Nordtirol – Nordhang: 1060 m ü. NN.

<u>Angaben zum Standort:</u>	
Bezeichnung:	Montaner frischer Silikat-(Lärchen-)Fichtenwald
Gelände:	Hangneigung bis 38 - 76%, Mittelhang
Wasser/Nährstoffhaushalt:	gut
Gesteine:	Intermediäre (saure) Silikatgesteine oder silikatische
	Lockersedimente
Boden:	mäßig frische, mittel- bis tiefgründige, feinerdreiche, fallweise
	podsolige Braunerden, selten Semipodsol; Bodenart mittel
Humus:	meist typischer Moder, bei Degradation auch rohhumusartig

Besonderheiten: Ausreichend Wasser und nährstoffversorgt, gut wüchsiger Fichtenwald; Strauchschicht nur bei Verjüngung vorhanden; gute Qualität der Fichte (Wertholz); teilweises Vorkommen von Rindenschäden; erhöhtes Auftreten von Rotfäule durch Steinschlag möglich

Standort: 1N - 1060m-N (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	28	42,80	71,80	23,80	14,53
Globaler E-Modul [N/mm²]	28	12376	20041	6745	3475
Norm-Rohdichte [kg/m³]	28	407	540	352	47
Mittlere Jahrringbreiten [mm]	28	2,58	5,25	1,40	0,94
Feuchtigkeit [%]	28	10,7	11,7	10,1	0,4

Tabelle 60: Standort: 1N - 1060m-N (NT), Statistische Auswertung

9.2.6 Standort 2N: Nordtirol – Nordhang: 1190 m ü. NN.

<u>Angaben zum Standort:</u>	
Bezeichnung:	Montaner frischer basischer Fichtenwald
Gelände:	Hangneigung bis 38 - 76%, Mittelhang
Wasser/Nährstoffhaushalt:	Gut
Gesteine:	Karbonatisch-silikatische Mischgesteine, reiche
	Karbonatgesteine oder basenreiche, karbonathaltige
	Lockersedimente
Boden:	meist frische, karbonathaltige Braunerde, Parabraunerde oder
	verbraunte Pararendzina, Kalkbraunlehm; mittelgründig,
	schluffig bis lehmig und feinerdreich
Humus:	typischer Kalk-Moder, moderartiger Mull
Besonderheiten:	Locker bis geschlossener Fichtenwald mit beigemischter
	Lärche; Üppige Bodenvegetation; wüchsige Bestände, in lichten
	Beständen meist tief beastet; Rotfäule bedingt durch
	Rindenverletzung (Steinschlag, Rückung) möglich; meist
	intensive forstwirtschaftliche Nutzung

Tabelle 61: Standort: 2N - 1190m-N (NT), Statistische Auswertung

Standort: 2N - 1190m-N (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	24	52,94	73,20	25,70	14,64
Globaler E-Modul [N/mm²]	24	13690	17008	10620	2035
Norm-Rohdichte [kg/m³]	24	427	473	390	25
Mittlere Jahrringbreiten [mm]	24	2,35	3,93	1,09	0,73
Feuchtigkeit [%]	24	10,9	11,3	10,2	0,3

9.2.7 Standort 3N: Nordtirol – Nordhang: 1380 m ü. NN.

<u>Angaben zum Standort:</u>	
Bezeichnung:	Montaner frischer basischer Fichtenwald
Gelände:	Hangneigung bis 38 - 76%, Mittelhang
Wasser/Nährstoffhaushalt:	Gut
Gesteine:	karbonatisch-silikatische Mischgesteine, reiche
	Karbonatgesteine oder basenreiche, karbonathaltige
	Lockersedimente
Boden:	meist frische, karbonathaltige Braunerde, Parabraunerde oder
	verbraunte Pararendzina, Kalkbraunlehm; mittelgründig,
	schluffig bis lehmig und feinerdreich
Humus:	typischer Kalk-Moder, moderartiger Mull
Besonderheiten:	Locker bis geschlossener Fichtenwald mit beigemischter
	Lärche; Üppige Bodenvegetation; wüchsige Bestände, in lichten
	Beständen meist tief beastet; Rotfäule bedingt durch
	Rindenverletzung (Steinschlag, Rückung) möglich; meist
	intensive forstwirtschaftliche Nutzung

Tabelle 62: Standort: 3N - 1380m-N (NT), Statistische Auswertung

Standort: 3N - 1380m-N (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	28	44,51	66,60	22,00	9,75
Globaler E-Modul [N/mm²]	28	11971	15335	10249	1363
Norm-Rohdichte [kg/m³]	28	412	464	377	24
Mittlere Jahrringbreiten [mm]	28	2,56	3,60	1,41	0,58
Feuchtigkeit [%]	28	10,9	11,5	10,5	0,2

9.2.8 Standort 4N: Nordtirol – Nordhang: 1620 m ü. NN.

<u>Angaben zum Standort:</u>	
Bezeichnung:	Montaner frischer basischer Fichtenwald
Gelände:	Hangneigung bis 38 - 76%, Mittelhang
Wasser/Nährstoffhaushalt:	gut
Gesteine:	karbonatisch-silikatische Mischgesteine, reiche
	Karbonatgesteine oder basenreiche, karbonathaltige
	Lockersedimente
Boden:	meist frische, karbonathaltige Braunerde, Parabraunerde oder
	verbraunte Pararendzina, Kalkbraunlehm; mittelgründig,
	schluffig bis lehmig und feinerdreich
Humus:	typischer Kalk-Moder, moderartiger Mull
Besonderheiten:	Locker bis geschlossener Fichtenwald mit beigemischter
	Lärche; Üppige Bodenvegetation; wüchsige Bestände, in lichten
	Beständen meist tief beastet; Rotfäule bedingt durch

Rindenverletzung (Steinschlag, Rückung) möglich; meist intensive forstwirtschaftliche Nutzung

Tabelle 63: Standort: 4N - 1620m-N (NT), Statistische Auswertung
--

Standort: 4N - 1620m-N (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	36	46,15	64,60	23,30	10,93
Globaler E-Modul [N/mm²]	36	11451	15264	8204	1652
Norm-Rohdichte [kg/m³]	36	405	444	360	22
Mittlere Jahrringbreiten [mm]	36	1,47	2,83	,77	,41
Feuchtigkeit [%]	36	11,0	11,5	10,6	,2

9.2.9 Standort 5N: Nordtirol – Nordhang: 1700 m ü. NN.

<u>Angaben zum Standort:</u>	
Bezeichnung:	Montaner frischer basischer Fichtenwald
Gelände:	Hangneigung bis 38 - 76%, Mittelhang
Wasser/Nährstoffhaushalt:	gut
Gesteine:	karbonatisch-silikatische Mischgesteine, reiche
	Karbonatgesteine oder basenreiche, karbonathaltige
	Lockersedimente
Boden:	meist frische, karbonathaltige Braunerde, Parabraunerde oder
	verbraunte Pararendzina, Kalkbraunlehm; mittelgründig,
	schluffig bis lehmig und feinerdreich
Humus:	typischer Kalk-Moder, moderartiger Mull
Besonderheiten:	Locker bis geschlossener Fichtenwald mit beigemischter
	Lärche; Üppige Bodenvegetation; wüchsige Bestände, in lichten
	Beständen meist tief beastet; Rotfäule bedingt durch
	Rindenverletzung (Steinschlag, Rückung) möglich; meist
	intensive forstwirtschaftliche Nutzung

Tabelle 64: Standort: 5N-1700m N (NT), Statistische Auswertung

Standort: 5N-1700m N (NT)	Anzahl	Mittelwert	Maximum	Minimum	Std.abw.
Biegefestigkeit [N/mm²]	26	41,06	59,90	21,50	9,46
Globaler E-Modul [N/mm²]	26	9364	11836	7489	1176
Norm-Rohdichte [kg/m³]	26	375	395	353	14
Mittlere Jahrringbreiten [mm]	26	1,65	2,32	0,75	0,40
Feuchtigkeit [%]	26	10,8	11,2	10,4	0,2

10 Literaturverzeichnis

- [1] <u>http://de.wikipedia.org/wiki/Hans Carl von Carlowitz</u> (Abfragedatum: 05.05.2011)
- [2] Schickhofer, G. et al.;
 Holzbau Der Roh- und Werkstoff Holz
 Institut für Holzbau & Holztechnologie, Skriptum TUG 2006
- [3] Schwarzbauer, P.;
 Der Holzmarkt in Österreich und Europa
 Holzbau Kooperation im ländlichen Raum, Linz 2005
 PowerPoint Präsentation
- [4] Daten von <u>http://faostat.fao.org</u> (Abfragedatum: 07.05.2011)
- [5] Daten von <u>http://bfw.ac.at</u>(Abfragedatum: 07.05.2011)
- [6] Wagenführ, R.;
 Anatomie des Holzes
 Strukturanalytik Identifizierung Nomenklatur Mikrotechnologie
 DRW-Verlag, 1999
- [7] Geza Ambrozy, H.; Giertlová, Z.;
 Planungshandbuch, Holzwerkstoffe
 Technologie Konstruktion Anwendung
 Springer Verlag/Wien, 2005
- [8] Wimmer, R. (1991);
 Beziehungen zwischen Jahrringparametern und Rohdichte von Kiefernholz
 Holzforschung und Holzverwertung 43(4): 79-82.
- [9] Agrar- und Forstbericht 2009 Autonomie Provinz Bozen, 2009
- [10] ÖNORM EN 13183-1:2004
 Feuchtegehalt eines Stückes Schnittholz
 Teil 1: Bestimmung durch Darrverfahren
 Österreichisches Normungsinstitut (ON), Wien 2004

- [11] ÖNORM DIN 4074-1:2009-06-15
 Sortierung von Holz nach der Tragfähigkeit
 Teil 1: Nadelschnittholz
 Österreichisches Normungsinstitut (ON), Wien 2009
- [12] ÖNORM EN 408:2005
 Holzbauwerke Bauholz für tragende Zwecke und Brettschichtholz Bestimmung einiger physikalische und mechanischer Eigenschaften Österreichisches Normungsinstitut (ON), Wien 2005
- [13] HFM
 Sortierhilfen und Erläuterungen zur Anwendung der DIN 4074 in der Praxis
 Holzforschung München, kein Datum
- [14] Holzknecht, S.;Maschinelle Sortierung von GebirgsholzUniversität Innsbruck, Diplomarbeit 2010
- [15] Lohmann, U. et al.;
 Holz Lexikon, 4. Auflage
 DRW-Verlag-Weinbrenner GmbH & Co., Leinfelden-Echterdingen 2003
- [16] MiCROTEC®-Innovating Wood
 Web Knot Calculator Manual, release v0.3
 Brixen 2009
- [17] Niemz, P.;
 Physik des Holzes und der Holzwerkstoffe
 DRW-Verlag Weinbrenner, Leinfelden-Echterdingen 1999
- [18] ÖNORM DIN 4074-1:2009
 Sortierung von Holz nach der tragfähigkeit
 Teil 1: Nadelschnittholz
 Österreichisches Normungsinstitut (ON), Wien 2009
- [19] ÖNORM EN 384:2010.
 Bauholz für tragende Zwecke Bestimmung charakteristischer Werte für mechanische Eigenschaften und Rohdichte
 Österreichisches Normungsinstitut (ON), Wien 2010
- [20] DIN 52184:1979
 Prüfung von Holz
 Bestimmung der Quellung und Schwindung
 DIN Deutsches Institut für Normung e.V., Berlin 1979

Holzbaulehrstuhl, Universität Innsbruck

- [21] ÖNORM EN 14081-2:2010
 Holzbauwerke Nach Festigkeiten sortiertes Bauholz für tragende Zwecke mit rechteckigem Querschnitt
 Teil 2: Maschinelle Sortierung – Zusätzliche Anforderungen an die Erstprüfung Österreichisches Normungsinstitut (ON), Wien 2010
- [22] ÖNORM EN 13183-2:2002
 Feuchtegehalt eines Stückes Schnittholz
 Teil 2: Schätzung durch elektrisches Widerstands-Messverfahren
 Österreichisches Normungsinstitut (ON), Wien 2010
- [23] Maderebner, R. et al.;
 Influence on measuring results by knottiness of ultrasound measurements of bending stress-section spruce wood beams
 Paper 534, WCTE 2012, Auckland
- [24] ÖNORM EN 338:2009
 Bauholz für tragende Zwecke Festigkeitsklassen
 Österreichisches Normungsinstitut (ON), Wien 2009
- [25] ÖNORM B 3012:2003
 Holzarten –
 Kennwerte zu den Bemessungen und Kurzzeichen der ÖNORM EN 13556
 Österreichisches Normungsinstitut (ON), Wien 2003
- [26] ÖNORM EN 14081-4:2009

Holzbauwerke - Nach Festigkeit sortiertes Bauholz für tragende Zwecke mit rechteckigem Querschnitt - Teil 4: Maschinelle Sortierung - Einstellungen von Sortiermaschinen für maschinenkontrollierte Systeme Österreichisches Normungsinstitut (ON), Wien 2009

11 Anhang B

Auf den folgenden Seiten wird ein im Zuge dieses Forschungsprojektes erarbeitetes Paper zum Thema

"Einfluss der Astigkeit auf die Ergebnisse von Ultraschallmessungen biegebeanspruchter Fichtenholz-Balken",

welches bei der World Conference on Timber Engineering in Auckland 2012 [23] vorgestellt wurde, präsentiert.

Influence on measuring results by knottiness of ultrasound measurements of bending stress-section spruce wood beams

Roland Maderebner¹, Anton Kraler², Wilfried Konrad Beikircher³, Michael Flach⁴

ABSTRACT: At non-destructive testing of timber beams by ultrasound measurement it is often difficult to clearly define elastic-mechanical properties. Several measurements at the same cross section can lead to different results. In order to improve the measurement results not only the gross density is examined, but also possible influences of knottiness. At the same time the influence of the position of the ultrasound measurement on the bending test is being analyzed. It is shown that an immediate categorization in strength classes with the help of pre-settings at ultrasound measurement devices can lead to uncertainties. By using certain knottiness parameters possible influences on the results of ultrasound measurements are presented.

KEYWORDS: Ultrasound-measurement, bending test, dynamic and static modulus of elasticity, knottiness

1 INTRODUCTION

In the course of a research project on elastic-mechanical properties of spruce wood extensive investigations were carried out at the department of timber engineering of the University of Innsbruck. Partial results of this research project should be presented here. Project partners, that is to say the ordering parties, were the TIS innovation park –Technical Innovation Center of South Tyrol– and, besides others, the Holzcluster Tyrol. Test pieces from a total of 22 altitude zones were taken at two different locations in North Tyrol and South Tyrol.

The locations of the trees were carefully chosen in cooperation with foresters. 476 rectangular test pieces with the measurements 48/138/4050 could be won. In order to exactly define the location of the test pieces in

the tree trunks the logs were tagged immediately after cutting of the tree on the mountain side by colour markings. To prevent the influence of red rot and reaction wood above all in the root joint the specimen were only taken from the middlelog after about 4,5 m.

Figure 1: Location of the specimen

Figure 2: Sampling and marking

The department of timber engineering is often confronted with the task of determining strength and stiffness of existing timber framework. Among other tools ultrasound measurement is used for this classification. As there are contradictions and insecurities turning up in the practical usage it was investigated in this research project which effects the location of the ultrasound measurements at the cross

¹ Roland Maderebner, University of Innsbruck, Faculty of Civil Engineering-Institute of construction and material technology, department of timber engineering.

Email: roland.maderebner@uibk.ac.at

² Anton Kraler, University of Innsbruck, Faculty of Civil Engineering-Institute of construction and material technology, department of timber engineering. Email: anton.kraler@uibk.ac.at

³ Wilfried Konrad Beikircher, University of Innsbruck, Faculty of Civil Engineering-Institute of construction and material technology, department of timber engineering. Email: wilfried.beikircher@uibk.ac.at

⁴ Michael Flach, University of Innsbruck, Faculty of Civil Engineering-Institute of construction and material technology, department of timber engineering. Email: <u>michael.flach@uibk.ac.at</u>

section as well as knottiness have on the measurement results.

2 MATERIAL AND METHODS

2.1 PREPARATION OF THE TEST PIECES

After cutting the specimen they were kiln-dried at a moisture content of wood of 12%. After the drying the Company Theurl Holz carried out the machine stress grading of the converted wood and it was then visually graded at the University of Innsbruck according to the rules DIN 4074-1 [2].

The "lower point" in the sections was determined by using the specific sort parameters.

On the basis of this data the specimen were cut to a length of $18 \cdot h + 2 \cdot (\ge h/2)$ according to the requirements of EN 408 [3] regarding bending tests. In doing so the 2630 mm long test piece was cut out of the 4050 mm long squared timber in a way that the weakest cross section (= predicted breaking point) was located in the middle third.

Figure 3: Preparation and test sample production

Because of the load application in the third points of the test piece when carrying out 4-point bending tests according to EN 408 [3] the predicted breaking point is located in the within the range of the constant loading of the moment (figure 3).

After the cutting there is again the transmission of the marking for the uphill sides as well as the specimen numbers. Subsequently there was the necessary climatization in a normal climate of 20 ± 3 °C and 65 ± 5 % relative humidity.

For the direct transmission of the ultrasound waves into the wood 10 mm deep holes are drilled into the ends of the quarter points of the cross section with a conical drill so that the ultrasound heads can be applied.

2.2 ULTRASOUND MEASUREMENT

A very frequently used method of non-destructive assessment of mechanical parameters for sawn wood is the ultrasonic transit time measurement.

Figure 4: Humidity and ultrasound measurement

The ultrasound method is based on the fact that vibrations in solid bodies depend on physical and elastic-mechanical properties and therefore spread at different speeds.

The propagation velocity of sound waves in a test piece is thus dependent on the following factors [4].

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{1}{\mathbf{v}^2} \cdot \frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} \quad \text{mit} \quad \mathbf{v}^2 = \frac{\mathbf{E} \cdot (1 - \mathbf{v})}{\rho \cdot (1 + \mathbf{v}) \cdot (1 - 2 \cdot \mathbf{v})} \quad (1)$$

Where

v Wave velocity [m/s] u,x Displacement vector

E Modulus of elasticity (MOE) [N/mm²]

ρ density [kg/m³]

t Time [s]

v Poisson's coefficient

If the dimensions of a test piece are small in comparison to the wave lengths, the wave velocity may be found by equation (2) [4]

$$v^2 = \frac{E}{\rho}$$
(2)

This is, however, only the case when the materials are homogenously orthotropic. When dealing with wood and all its inhomogeneities the results one gains can only be seen as approximate values.

One must pay attention to the effects of the moisture content of wood as well as of the wood temperature on the sound velocity. As reference values for the moisture content of wood u=12% and the temperature T = 20 °C are to be used.

The ultrasound measurements are carried out with the ultrasonic measuring instrument Sylvatest, consisting of the components Sylvatest Duo, cabel RS232, Psion Workabout mx, ultrasound heads.

2.2.1 Influence of moisture content of wood on sound velocity

With an increasing moisture content of wood the sound velocity is reduced and gets close to the propagation velocity of water [5]. After equation (3) for u < 28 % there is the conversion to v_{12} in [m/s] [6]

$$\mathbf{v}_{12} = \frac{\mathbf{v}_{u}}{1 - 0,0053 \cdot (u - 12)} \tag{3}$$

Where

- v_u Ultrasound velocity at a moisture content of wood u and temperature T in [m/s]
- v_{12} Ultrasound velocity at u = 12% in [m/s]

u Measured moisture content of wood [%]

2.2.2 Influence of temperature

As the moisture content of wood is among other things influenced by the temperature there is a mutual interference of these factors.
With the equation (4) the referenced ultrasound velocity $v_{12/20}$ in [m/s] can be determined [6].

$$\mathbf{v}_{12/20} = \frac{\mathbf{v}_{12}}{\left[1 - 8 \cdot 10^{-4} \cdot (\mathbf{T} - 20)\right]}$$
(4)

Where

 $v_{12/20}$ Wave velocity referenced at u = 12 % and T = 20 °C in [m/s]

 v_{12} See equation (2)

T Wood temperature at the point of time of the measurement [°C]

2.2.3 Influence of the position at the cross section on the ultrasound measurement

The propagation velocity of the sound waves depends besides the variables given in 2.2.1 and 2.2.2 above all also on other factors [1]

- Type of material
- Inhomogeneities of the structural matrix (cracks, knots, ,..)
- Kind of sound transmission (coupling and coupling medium)
- Propagation direction of the waves, dimensions of the test pieces

At bending tests the most frequent mode of failure is the tensile fracture of the cross section. Above all in the close-up range of knots there is stress concentration and sloping grain in bending tension areas which leads to a break. As according to the regulations the test installation at the bending test should be applied arbitrarily, the markings on the uphill side are applied alternatively at the top (bending compressive area) and at the bottom (bending tension area).

In order to determine a possible influence of the position of ultrasound measurements, measurements are carried out at 3 places (*USM1*, *USM2 and USM3*) at the respective quarterpoints (figure 4) of the cross section.

According to the type of measuring (longitudinal, radial), the type of application (sawn timber, logs), direct or indirect measurement, the kind of wood - with the help of measuring technique mentioned under 2.2 - the calculation of MOE (modulus of elasticity) and MOR (modulus of rupture) can be carried out. It is already made a classification into strength classes of REJ, C7 - C40. In doing so the classification is carried out via a fixed gross density (taking into consideration the kind of wood in the ultrasound device) as well as via the ultrasound velocity.

In the course of a previous determination of the stiffness and consistencies and the following classification in types of strength in the laboratory the problem originating from everyday practice became also apparent.

The 3 measurements/beams USM1, USM2, USM3 often led to differing results concerning types of strength. The gross density influences according to equation (2) measurement results very much. It is therefore extremely important to determine the gross density exactly. Measurements resulting from preset US-measuring instruments can therefore only show relative findings. The scattering of measuring results from ultrasound measurements on a beam must, however, be traced back to other parameters.

2.3 PRELIMINARY INVESTIGATIONS

On the basis of the carried out ultrasound measurements with using device preferences to determine the classes of strength one can, by referring to 445 test pieces with 1335 carried out ultrasound measurements (3 measurements per beam), present the following facts. At about a third of the test pieces the same types of strength classes could be measured at all three measuring points. At 51% there was a difference of one type of strength class (example: measurement 1, *USM1*: C27; measurement 2, *USM2*: C30; measurement 3, *USM3*: C30). At about 17% there was a difference of at least 2 types of strength classes (example: measurement 1, *USM1*: C18; measurement 2, *USM2*: C24; measurement 3, *USM3*: C27).

Figure 5: Ultrasound measurement preexamination, differences in grading class

In order to deal with this situation, which leads to uncertainties, investigations carried out to determine the influence of further parameters will be described in the following points.

2.4 GROSS DENSITY

In order to determine gross density oven-dry samples were cut out after the bending tests in accordance with EN 408 [3]. The tested spruce woods had, according to EN 384 [7] a middle gross density of 416,39 kg/m³ at a coefficient of variation COV = 8% (standard derivation 34,57 kg/m³). With a bandwidth of 197 kg/m³, a maximum of 540 kg/m³ and a minimum of 343 kg/m³.

Table 1: Gross density, statistical analysis

	N	Mean [kg/m³]	Max [kg/m ³]	Min [kg/m³]	Std [kg/m³]	COV [%]
Density	445	416,39	540,22	342,85	34,57	8,30

2.5 MOISTURE CONTENT

The moisture content of wood is - according to EN 13183-1 [8] - at the time of the ultrasound measurements respectively the bending tests an average

of 11%. With a maximum value of 13,14 % and a minimum of 9,75 % (standard of derivation 0,51 %).

Table 2: moisture content results

	N	Mean [%]	Max [%]	Min [%]	Std. [%]	COV [%]
u [%]	445	11,01	13,14	9,75	0,51	4,61

2.6 AVERAGE OF ANNUAL-RING-WIDTH

The average of annual ring width was determined according to DIN 4074-1 [2]. As the tested material was mountain wood, there were partly very narrow distances between the annual rings. The average value of annual ring width is 2,13 mm, the maximum is 6,90 mm and the minimum 0,69 mm (standard derivation 1,09 mm).

Table 3: Average of annual-ring width (AARW) results

	N	Mean [mm]	Max [mm]	Min [mm]	Std [mm]	COV [%]
AARW	445	2,13	6,90	0,69	1,09	0,51

2.7 DETERMINATION OF KNOT PARAMETERS

Knots have a great impact on the structural properties of wood. Conifers can have an up to 100% higher gross density [9] than the wood surrounding them. Due to knots there is fiber derivation in the wood. Because of the existing inhomogeneities there is a concentration of tension at load application. At these places breaks occur frequently. Especially when there is bending tension stress or tension stress this results in failure near knots.

For the exact determination of knot parameters and the implied effects on the mechanical properties knots with a diameter d > 5 mm were geometrically recorded with the help of the Web knot calculator v 2.1 (MiCROTEC[®]) [10]. All in all 7744 knots were documented. The determination of knot dimension has to be carried out according to DIN 52181 [11].

For every single knot the following parameter were recorded

- Specimen number
- Specimen dimension
- Kind of wood
- Knot item
- x-coordinate of the knot (longitudinal axis of the beam)
- Position of the knot in the cross section
- Knot diameter d_{min}
- Pith in cross section (y/n)

Because of the vast amount of data and the comparability of the knot parameter with the results of the bending tests only the data concerning the knottiness at the middle of the test piece is used for the evaluation for the time being. With the help of the Web knot calculator the following knot parameters were found (figure (6)).

2.7.1 DEK (Diameter single knot joist)

The parameter DEK is the major ratio of the minimal surface diameter of the knot to the according side of the piece [10].

$$DEK = \max\left\{\frac{d_{\min}}{b}; \frac{d_{\min}}{t}\right\}$$
(5)

An average value for DEK of 0,49, a maximum of 0,90 and a minimal value of 0,04 was given (standard derivation 0,15) (table (4)).

2.7.2 tKnot (Total Knot)

The parameter tKnot is the ratio of the projected crosssection area of the knot to the cross-section area of the piece [10].

$$tKnot = \frac{\sum}{b \cdot t}$$
(6)

An average value for tKnot of 0,14, a maximum of 0,31 and a minimal value of 0,02 was given (standard derivation 0,05) (table (4).

2.7.3 mKnot (Marginal Knot)

The parameter mKnot is the ratio of the major projected cross-section area of the knot or portions of the knot in a margin to the cross-section area of the margin [10].

$$mKnot = \frac{1}{\frac{1}{4}b \cdot t}$$
(7)

An average value for mKnot of 0,40, a maximum of 0,82 and a minimal value of 0,00 was given (standard derivation 0,15) (table (4)).

2.7.4 tKAR (total Knot Area Ratio)

The parameter tKAR is the ratio of the sum of the total projected cross-section areas of all knots within 150 mm to the cross-section area of the piece. Overlapping areas just count once [10].

$$tKAR = \frac{\sum_{x=0}^{150 \text{mm}}}{b \cdot t}$$
(8)

An average value for tKAR of 0,23, a maximum of 0,51 and a minimal value of 0,02 was given (standard derivation 0,09) (table (4)).

2.7.5 mKAR (Marginal Knot Area Ratio)

The parameter mKAR is the ratio of the sum of the total projected cross-section areas of all knots or all portions of knots in a margin within 150 mm to the cross-section area of the margin. Overlapping areas just count once [10].

$$mKAR = \frac{\sum_{x=0}^{150}}{\frac{1}{4} \cdot \mathbf{b} \cdot \mathbf{t}}$$
(9)

An average value for mKAR of 0,42, a maximum of 0,85 and a minimal value of 0,00 was given (standard derivation 0,16) (table (4)).

The results of all given knot parameters can be seen in table (4).

Table 4: knot parameter results

		Mean	Max	Min	Std.	COV
	Ν	[-]	[-]	[-]	[-]	[%]
DEK	445	0,39	0,90	0,04	0,15	38,46
tKnot	445	0,14	0,31	0,02	0,05	35,71
mKnot	445	0,40	0,82	0,00	0,15	37,5
tKAR	445	0,23	0,51	0,02	0,09	39,13
mKAR	445	0,42	0,85	0,00	0,16	38,10

2.8 BENDING TESTS

Bending tests are carried out according to EN 408 [3] as 4-point tests. The marking of the uphill side mentioned in the introduction was used at the bending tests for the arbitrary arrangement. Thus about 50% were tested with the uphill side up and 50% with the uphill side down. For the global modulus of elasticity $E_{m,g,12}$ respectively the bending strength $f_{m,150}$ the calculated values according to EN 384 [7] could be found, as one can see in the table (5).

Table 5: bending test results

		Mean	Max	Min	Std	cov
	N	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[%]
E _{m,g,12}	445	11832	20457	4604	2559	21,63
f _{m,150}	445	43,60	78,30	12,20	12,82	29,40

Figure 6: Calculation of knot parameters, example of the ID 18

Figure 7: Histogram and boxplot of Em,g, 12

Figure 8: Histogram and boxplot of f_{m150}

So the average modulus of elasticity is 11832 N/mm² at a standard derivation of 2559 N/mm² (COV 21,63 %).

The material showed relatively high bending strength with an average value of 43,6 N/mm². The maximum is 78,30 N/mm², the minimum 12,20 N/mm² at a standard derivation of 12,82 N/mm² (COV 29,40 %).

2.9 ULTRASOUND MEASUREMENT

The results of a total of 1335 ultrasound measurements can be seen in table (6).

One can see that – regardless of the measuring points USM1, USM2 or USM3 (figure (9)) – the average values of $E_{dyn,12/20}$ lie between 13817 N/mm² - 13571 N/mm², with a standard derivation of about 2200 N/mm² (COV = 16 %).

Figure 9: Ultrasound measurement positions

Table 6: Ultrasound measurement results

		Mean	Max	Min	Std	cov
	Ν	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[%]
USM1	445	13817	22631	8808	2240	16,21
USM2	445	13604	22407	8679	2155	15,84
USM3	445	13571	22297	8932	2200	16,21

3 RESULTS

3.1 COMPARISON OF THE GLOBAL MODULUS OF ELASTICITY AND THE RESULTS OF THE ULTRASOUND MEASUREMENTS

A comparison of stated values of the global modulus of elasticity $E_{m,g,12}$ with the calculated values of all ultrasound measurements $E_{dyn,12/20}$ shows a correlation $R^2 = 0,85$. As result of a linear regression analysis equation (10) can be used as an estimate.

$$E_{m,g,12} = 1,0751 \cdot E_{dvn,12/20} - 2859,8 \quad (R^2 = 0,85) \quad (10)$$

In figures (10) to (12), the results of the ultrasonic measurements $E_{dyn,12/20}$ of USM1 to USM3 compared with $E_{m,g,12}$ are represented.

By structuring the results in the categories

- ultrasound measurement in bending compressive stress area (figure (13))
- ultrasound measurement in bending tension stress area (figure (14))

one can see a slight rise of correlation of testing results in the field of bending compression zone, but there isn't any distinctive improvement of correlation to be seen.

Figure 10: scatter plot for $E_{m,g,12}$ vs. USM1 $E_{dyn,12/20}$ ($R^2=0,86$)

Figure 11: scatter plot for $E_{m,g,12}$ vs. USM2 $E_{dyn,12/20}$ (R^2 =0,86)

Figure 12: scatter plot for $E_{m,g,12}$ vs. USM3 $E_{dyn,12/20}$ (R^2 =0,854)

Figure 13: scatter plot for $E_{m,g,12}$ vs. $E_{dyn,12/20}$ in bendingcompressive stress area ($R^2=0,862$)

Figure 14: scatter plot for $E_{m,g,12}$ vs. $E_{dyn,12/20}$ in bendingtension stress area ($R^{2}=0,845$)

3.2 COMPARISON OF BENDING STRENGTH WITH ULTRASOUND MEASUREMENTS

When comparing the correlations of the results of the bending strengths $f_{m,150}$ with the results of the ultrasound measurements $E_{dyn,12/20}$ in the areas of bending compressive/tension stress respectively neutral axis the outcome can be seen in figure (15).

Figure 15: Comparison of correlations $R^2 f_{m, 150}$ vs. $E_{dyn, 12/20}$

Figure 16: scatter plot for $f_{m,150}$ vs. $E_{dyn,12/20}$ in bendingcompressive stress area ($R^2=0,377$)

Figure 17: scatter plot for $f_{m,150}$ vs. $E_{dyn,12/20}$ in neutral axis ($R^2=0,413$)

Figure 18: scatter plot for $f_{m,150}$ vs. $E_{dyn,12/20}$ in bendingtension stress area ($R^2=0,441$)

3.3 COMPARISON OF BENDING STRENGTHS AND ULTRASOUND MEASUREMENTS WITH KNOT PARAMETERS

A comparison of correlations of bending strengths with specific knot parameters shows only minor dependencies. The biggest measure of correlation is reached with the parameter tKAR with $R^2=0,289$ (figure (19)) and DEK with $R^2=0,214$ (figure (20)). The knot parameters mKnot, mKAR and tKnot are not presented because the correlations are distinctly lower.

A comparison of ultrasonic measurements (figure (21) and (22)) with the knot parameters shows a similar picture. However, the correlations are still significantly lower.

Figure 19: scatter plot for $f_{m,150}$ vs. tKAR (R²=0,289)

Figure 20: scatter plot for f_{m,150} vs. DEK (R²=0,214)

Figure 21: scatter plot for E_{dyn,12/20} vs. tKAR

Figure 22: scatter plot for Edyn, 12/20 vs. DEK

4 CONCLUSION

Due to the carried out investigations a vast amount of data could be found. The knot parameters DEK, tKnot, tKAR, mKnot as well as mKAR are determined. It could be proved that an immediate categorization into classes of strength by means of default at ultrasound measurement instruments can lead to results which are difficult to interpret.

A comparison of calculated values $E_{dyn,12/20}$ from ultrasound measurements shows very good correlations with the value $E_{m,g,12}$. For the time being no connection between the results $E_{m,g,12}$ and the results $E_{dyn,12/20}$ of the positions USM1, USM2 and USM3 of ultrasound measurements at the cross section (bending compression, bending tension zone) could be found. The dependencies of bending strengths $f_{m,150}$ on $E_{dyn,12/20}$ show a slight increase, starting from the bending compression zone to the bending tension zone of the cross section.

The determined knot parameters show only marginal dependencies on bending strength $f_{m,150}$. A reason for this is the required arbitrary position of the test pieces at tension tests. This is why the compliance of the parameter tKAR with the results of bending strengths is the highest.

So far no influence of the here presented knot parameters on the results of the ultrasound measurements has been found. In further investigations the knot parameters of the complete length of test pieces will be determined and compared with the results of bending tests.

ACKNOWLEDGEMENT

At this point I would like to thank my ordering parties TIS (Mr. Paolo Bertoni, Mr. Michael Stauder,) and Mr. Simon Holzknecht for their understanding and their interesting contributions. Above all I would like to thank Mr. Martin Bacher who assisted me again and again with all his professional expertise.

Of course my thanks are also addressed to the project leader Mr. Anton Kraler, and to Mr. Wilfried Konrad Beikircher for their ideas and their support. Finally, I also thank Mrs Elisabeth Bocksruker for assistance with translation.

REFERENCES

- ÖNORM DIN 4074-3:2009 Strength grading of wood – Part 3: Devices for supporting visual grading of sawn timber; Requirements and testing Austrian Standards Institute (ON), Vienna 2009
 ÖNORM DIN 4074-1: 2009
- Strength grading of wood Part 1: Coniferous sawn timber
- Austrian Standards Institute (ON), Vienna 2009
 [3] ÖNORM EN 408: 2005
 Timber structures Structural timber and glued laminated timber — Determination of some physical and mechanical properties
 Austrian Standards Institute (ON), Vienna 2005
- [4] Steiger René; Mechanische Eigenschaften von Schweizer Fichten-Bauholz bei Biege-, Zug-, Druck- und kombinierter M/N-Beanspruchung – Sortierung von Rund- und Schnittholz mittels Ultraschall Dissertation. Institut für Baustatik und Konstruktion. ETH Zürich, 1996
 [5] Gwi-Soon Shin;
- Die Temperaturabhängigkeit der Ultraschallgeschwindigkeit in biologischen Medien Fachbereich Physik der Freien Universität Berlin, 1997
- [7] ÖNORM EN 384:2010
 Structural timber Determination characteristic values of mechanical properties and density
 Austrian Standards Institute (ON), Vienna 2010
- [8] ÖNORM EN 13183-1:2002/AC:2003 Moisture content of coniferous sawn - Part 1: Determination by kiln drying method Austrian Standards Institute (ON), Vienna 2003
- [9] Niemz, Peter;
 Physik des Holzes und der Holzwerkstoffe
 DRW Verlag, Leinfelden Echterdingen, 1993
- [10] <u>http://knots.microtec.eu/index.html</u> Online –Software Web Knot Calculator v 2.1 ©MiCROTEC GmbH/Srl, I-39042 Brixen (request date 2012-02-01)
- [11] DIN 52181-1975
 Determination of growth properties of coniferous sawn
 German Institute for Standardization (DIN), 1975
- [12] ÖNORM EN 13183-2:2004 Moisture content of coniferous sawn - Part 2: Determination by measurement of electrical resistant

Austrian Standards Institute (ON), Vienna 2004

Impressum

Projekt:

Gebirgsholz – Wald ohne Grenzen; deutliche Verbesserung des Marktwertes Süd-, Ost- & Nordtiroler Gebirgshölzer und ausgewählter Holznischenprodukte

Legname di montagna foreste senza confini; valorizzazione del legname di montagna in Tirolo (Sud, Nord e orient.); prodotti di nicchia scelti

Ein Interreg IV Italien-Österreich Projekt, kofinanziert aus Mitteln des Europäischen Fonds für regionale Entwicklung (EFRE) und nationalen öffentlichen Beiträgen

Auftraggeber: TIS innovation park / Cluster Holz & Technik Siemensstr. 19 39100 Bozen Italien Ansprechpartner: Paolo Bertoni Michael Stauder

> proHolz Tirol / Holzcluster Meinhardstraße 14 6020 Innsbruck Österreich Ansprechpartner: Wolfram Allinger-Csollich Simon Holzknecht

Durchführung:Institut für Konstruktion und Materialwissenschaften
Arbeitsbereich HolzbauLeopold Franzens Universität InnsbruckTechnikerstraße 136020 InnsbruckÖsterreichProjektleitung:Anton KralerProjektbearbeitung:Roland MaderebnerBerichtslegung:Roland Maderebner

Innsbruck, im Juli 2012